On functions with continuous restrictions to various sets

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Departmentof Radiology, University of Pennsylvania

The Summer Symposium in Real Analysis XXXVII São Carlos, Brazil, June 4, 2013.

Outline

- Separate and linear continuity prehistory
- 2 Discontinuity sets of separately/linearly continuous functions
- 3 Functions with continuous restrictions to k-flats
- Φ \mathcal{F} -continuity, allowing curvy surfaces in \mathcal{F}
- 5 When \mathcal{F} -continuity implies continuity?
- 6 Summary

Outline

- Separate and linear continuity prehistory
- 2 Discontinuity sets of separately/linearly continuous functions
- 3 Functions with continuous restrictions to *k*-flats
- 4 \mathcal{F} -continuity, allowing curvy surfaces in \mathcal{F}
- 5 When F-continuity implies continuity?
- 6 Summary

Basic definitions; separate and linear continuities

We consider mainly functions $f: \mathbb{R}^n \to \mathbb{R}$, $n = 2, 3, 4, \dots$ fixed.

For a fixed collection \mathcal{F} of subsets of \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}$

• f is \mathcal{F} -continuous iff $f \upharpoonright F$ is continuous for every $F \in \mathcal{F}$

For $k \le n$, $\mathcal{F}_{k,n}$: all k-dimensional flats (affine subspaces) of \mathbb{R}^n $\mathcal{F}_{k,n}^+$: all $F \in \mathcal{F}_{k,n}$ parallel to spaces spanned by coordinate vector

- f is separately continuous iff it is $\mathcal{F}_{1,n}^+$ -continuous
- f is linearly continuous iff it is $\mathcal{F}_{1,n}$ -continuous

Basic definitions; separate and linear continuities

We consider mainly functions $f: \mathbb{R}^n \to \mathbb{R}$, n = 2, 3, 4, ... fixed.

For a fixed collection \mathcal{F} of subsets of \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}$

• f is \mathcal{F} -continuous iff $f \upharpoonright F$ is continuous for every $F \in \mathcal{F}$

For $k \le n$, $\mathcal{F}_{k,n}$: all k-dimensional flats (affine subspaces) of \mathbb{R}^n $\mathcal{F}_{k,n}^+$: all $F \in \mathcal{F}_{k,n}$ parallel to spaces spanned by coordinate vectors

- f is separately continuous iff it is $\mathcal{F}_{1,n}^+$ -continuous
- f is linearly continuous iff it is $\mathcal{F}_{1,n}$ -continuous

Basic definitions; separate and linear continuities

We consider mainly functions $f: \mathbb{R}^n \to \mathbb{R}$, n = 2, 3, 4, ... fixed.

For a fixed collection \mathcal{F} of subsets of \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}$

• f is \mathcal{F} -continuous iff $f \upharpoonright F$ is continuous for every $F \in \mathcal{F}$

For $k \leq n$, $\mathcal{F}_{k,n}$: all k-dimensional flats (affine subspaces) of \mathbb{R}^n

 $\mathcal{F}_{k,n}^+$: all $F \in \mathcal{F}_{k,n}$ parallel to spaces spanned by coordinate vectors

- f is separately continuous iff it is $\mathcal{F}_{1,n}^+$ -continuous
- f is linearly continuous iff it is $\mathcal{F}_{1,n}$ -continuous

Basic definitions; separate and linear continuities

We consider mainly functions $f: \mathbb{R}^n \to \mathbb{R}$, n = 2, 3, 4, ... fixed.

For a fixed collection \mathcal{F} of subsets of \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}$

• f is \mathcal{F} -continuous iff $f \upharpoonright F$ is continuous for every $F \in \mathcal{F}$

For $k \leq n$, $\mathcal{F}_{k,n}$: all k-dimensional flats (affine subspaces) of \mathbb{R}^n

 $\mathcal{F}_{k,n}^+$: all $F \in \mathcal{F}_{k,n}$ parallel to spaces spanned by coordinate vectors

- f is separately continuous iff it is $\mathcal{F}_{1,n}^+$ -continuous
- f is linearly continuous iff it is $\mathcal{F}_{1,n}$ -continuous

Basic definitions; separate and linear continuities

We consider mainly functions $f: \mathbb{R}^n \to \mathbb{R}$, n = 2, 3, 4, ... fixed.

For a fixed collection \mathcal{F} of subsets of \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}$

• f is \mathcal{F} -continuous iff $f \upharpoonright F$ is continuous for every $F \in \mathcal{F}$

For $k \leq n$, $\mathcal{F}_{k,n}$: all k-dimensional flats (affine subspaces) of \mathbb{R}^n

 $\mathcal{F}_{k,n}^+$: all $F \in \mathcal{F}_{k,n}$ parallel to spaces spanned by coordinate vectors

- f is separately continuous iff it is $\mathcal{F}_{1,n}^+$ -continuous
- f is linearly continuous iff it is $\mathcal{F}_{1,n}$ -continuous

Continuity vs \mathcal{F} -continuity: prehistory (for n=2)

Cauchy, in 1821 book Cours d'analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples

• J. Thomae calculus text 1870 (and 1873), due to E. Heine:

$$F(x,y) = \sin\left(4\arctan\left(\frac{y}{x}\right)\right) \text{ for } \langle x,y\rangle \neq \langle 0,0\rangle, \ F(0,0) = 0.$$

• 1884 treatise on calculus by Genocchi and Peano:

$$P(x,y) = \frac{xy^2}{y^2 + y^4}$$
 for $\langle x,y \rangle \neq \langle 0,0 \rangle$, $P(0,0) = 0$.

Continuity vs \mathcal{F} -continuity: prehistory (for n=2)

Cauchy, in 1821 book Cours d'analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples

• J. Thomae calculus text 1870 (and 1873), due to E. Heine:

$$F(x,y) = \sin\left(4\arctan\left(\frac{y}{x}\right)\right) \text{ for } \langle x,y\rangle \neq \langle 0,0\rangle, \ F(0,0) = 0.$$

• 1884 treatise on calculus by Genocchi and Peano:

$$P(x,y) = \frac{xy^2}{x^2+y^4}$$
 for $\langle x,y \rangle \neq \langle 0,0 \rangle$, $P(0,0) = 0$.

Continuity vs \mathcal{F} -continuity: prehistory (for n=2)

Cauchy, in 1821 book Cours d'analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples:

J. Thomae calculus text 1870 (and 1873), due to E. Heine:

$$F(x,y) = \sin\left(4\arctan\left(\frac{y}{x}\right)\right)$$
 for $\langle x,y \rangle \neq \langle 0,0 \rangle$, $F(0,0) = 0$.

• 1884 treatise on calculus by Genocchi and Peano:

$$P(x,y) = \frac{xy^2}{x^2+y^4}$$
 for $\langle x,y \rangle \neq \langle 0,0 \rangle$, $P(0,0) = 0$.

Continuity vs \mathcal{F} -continuity: prehistory (for n = 2)

Cauchy, in 1821 book Cours d'analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples:

J. Thomae calculus text 1870 (and 1873), due to E. Heine:

$$F(x,y) = \sin\left(4\arctan\left(\frac{y}{x}\right)\right)$$
 for $\langle x,y\rangle \neq \langle 0,0\rangle$, $F(0,0) = 0$.

1884 treatise on calculus by Genocchi and Peano:

$$P(x,y) = \frac{xy^2}{x^2+y^4}$$
 for $\langle x,y \rangle \neq \langle 0,0 \rangle$, $P(0,0) = 0$.

Baire classification of separate continuous functions

Theorem ([Baire 1899] for n = 1, [Lebesgue 1905] for all n)

Every separately continuous function on \mathbb{R}^n is Baire class n-1, but need not be of lower Baire class, as

• for every Baire class n-1 function $g \colon [0,1] \to \mathbb{R}$ there is a separately continuous function F on \mathbb{R}^n such that

$$F(x,...,x) = g(x) \text{ for all } x \in [0,1].$$

Corollary

Every linearly continuous function on \mathbb{R}^n is Baire class n-1

Question (I believe open and very interesting)

Is the Baire class the best in the Corollary above?

Nothing is known for n > 3.

Baire classification of separate continuous functions

Theorem ([Baire 1899] for n = 1, [Lebesgue 1905] for all n)

Every separately continuous function on \mathbb{R}^n is Baire class n-1, but need not be of lower Baire class, as

• for every Baire class n-1 function $g: [0,1] \to \mathbb{R}$ there is a separately continuous function F on \mathbb{R}^n such that

$$F(x,...,x) = g(x)$$
 for all $x \in [0,1]$.

Corollary

Every linearly continuous function on \mathbb{R}^n is Baire class n-1

Question (I believe open and very interestil

Is the Baire class the best in the Corollary above?

Nothing is known for $n \ge 3$.

Baire classification of separate continuous functions

Theorem (Baire 1899) for n = 1, [Lebesgue 1905] for all n)

Every separately continuous function on \mathbb{R}^n is Baire class n-1, but need not be of lower Baire class, as

• for every Baire class n-1 function $g: [0,1] \to \mathbb{R}$ there is a separately continuous function F on \mathbb{R}^n such that

$$F(x,...,x) = g(x)$$
 for all $x \in [0,1]$.

Corollary

Every linearly continuous function on \mathbb{R}^n is Baire class n-1

Question (I believe open and wary interesting)
Is the Baire class the best in the Corollary above

Nothing is known for $n \ge 3$.

Baire classification of separate continuous functions

Theorem ([Baire 1899] for n = 1, [Lebesgue 1905] for all n)

Every separately continuous function on \mathbb{R}^n is Baire class n-1, but need not be of lower Baire class, as

• for every Baire class n-1 function $g: [0,1] \to \mathbb{R}$ there is a separately continuous function F on \mathbb{R}^n such that

$$F(x,...,x) = g(x)$$
 for all $x \in [0,1]$.

Corollary

Every linearly continuous function on \mathbb{R}^n is Baire class n-1

Question (I believe open and very interesting)

Is the Baire class the best in the Corollary above?

Nothing is known for n > 3.

Baire classification of linearly continuous functions?

Corollary

Every linearly continuous function on \mathbb{R}^n is Baire class n-1

Question (I believe open and very interesting)

Is the Baire class the best in the Corollary above?

Theorem (KC, very partial answer, preliminary work)

For every Baire class 1 function $g: [0,1] \to \mathbb{R}$ there is a linearly continuous function F on \mathbb{R}^2 such that

$$F(x, x^2) = g(x)$$
 for all $x \in [0, 1]$.

Baire classification of linearly continuous functions?

Corollary

Every linearly continuous function on \mathbb{R}^n is Baire class n-1

Question (I believe open and very interesting)

Is the Baire class the best in the Corollary above?

Theorem (KC, very partial answer, preliminary work)

For every Baire class 1 function $g: [0,1] \to \mathbb{R}$ there is a linearly continuous function F on \mathbb{R}^2 such that

$$F(x, x^2) = g(x)$$
 for all $x \in [0, 1]$.

Outline

- Separate and linear continuity prehistory
- 2 Discontinuity sets of separately/linearly continuous functions
- 3 Functions with continuous restrictions to *k*-flats
- 4 ${\cal F}$ -continuity, allowing curvy surfaces in ${\cal F}$
- When \mathcal{F} -continuity implies continuity?
- 6 Summary

D(f) denotes the set of points of discontinuity of f

 $\mathcal{D}(\mathcal{F}) = \{ D(f) \colon f \text{ is } \mathcal{F}\text{-continuous} \}$

Theorem (Kershner 1943, characterization of $\mathcal{D}(\mathcal{F}_{1.n}^+)$

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_{σ} set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Question (Kronrod 1944, still not fully answered)

Find a characterization $\mathcal{D}(\mathcal{F}_{1,n})$ (similar to that of Kershner) that is, of sets $\mathcal{D}(f)$ for linearly continuous functions f

D(f) denotes the set of points of discontinuity of f

 $\mathcal{D}(\mathcal{F}) = \{ D(f) \colon f \text{ is } \mathcal{F}\text{-continuous} \}$

Theorem (Kershner 1943, characterization of $\mathcal{D}(\mathcal{F}_{1,n}^+)$)

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_{σ} set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Question (Kronrod 1944, still not fully answered)

Find a characterization $\mathcal{D}(\mathcal{F}_{1,n})$ (similar to that of Kershner) that is, of sets D(f) for linearly continuous functions f

D(f) denotes the set of points of discontinuity of f

$$\mathcal{D}(\mathcal{F}) = \{ D(f) \colon f \text{ is } \mathcal{F}\text{-continuous} \}$$

Theorem (Kershner 1943, characterization of $\mathcal{D}(\mathcal{F}_{1,n}^+)$)

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_σ set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Question (Kronrod 1944, still not fully answered)

Find a characterization $\mathcal{D}(\mathcal{F}_{1,n})$ (similar to that of Kershner) that is, of sets $\mathcal{D}(f)$ for linearly continuous functions f

D(f) denotes the set of points of discontinuity of f

$$\mathcal{D}(\mathcal{F}) = \{ D(f) \colon f \text{ is } \mathcal{F}\text{-continuous} \}$$

Theorem (Kershner 1943, characterization of $\mathcal{D}(\mathcal{F}_{1,n}^+)$)

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_σ set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Question (Kronrod 1944, still not fully answered)

Find a characterization $\mathcal{D}(\mathcal{F}_{1,n})$ (similar to that of Kershner) that is, of sets D(f) for linearly continuous functions f

On sets D(f) for linearly continuous functions f

Theorem (Slobodnik 1976: upper bound for $\mathcal{D}(\mathcal{F}_{1,n})$)

If $D \subset \mathbb{R}^n$ is the set of discontinuity points of some linearly continuous function $f \colon \mathbb{R}^n \to \mathbb{R}$, then

$$D=\bigcup_{i<\omega}D_i,$$

where each D_i is isometric to the graph of a Lipschitz function $\phi_i \colon K_i \to \mathbb{R}$ with K_i being compact nowhere dense in \mathbb{R}^{n-1} .

In particular, such D must have Hausdorff dimension $\leq n-1$,

while there is a separately continuous $f: \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue (so, n-Hausdorff) measure

On sets D(f) for linearly continuous functions f

Theorem (Slobodnik 1976: upper bound for $\mathcal{D}(\mathcal{F}_{1,n})$)

If $D \subset \mathbb{R}^n$ is the set of discontinuity points of some linearly continuous function $f \colon \mathbb{R}^n \to \mathbb{R}$, then

$$D=\bigcup_{i<\omega}D_i,$$

where each D_i is isometric to the graph of a Lipschitz function $\phi_i \colon K_i \to \mathbb{R}$ with K_i being compact nowhere dense in \mathbb{R}^{n-1} .

In particular, such *D* must have Hausdorff dimension $\leq n - 1$,

while there is a separately continuous $f: \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue (so, n-Hausdorff) measure

On sets D(f) for linearly continuous functions f

Theorem (Slobodnik 1976: upper bound for $\mathcal{D}(\mathcal{F}_{1,n})$)

If $D \subset \mathbb{R}^n$ is the set of discontinuity points of some linearly continuous function $f \colon \mathbb{R}^n \to \mathbb{R}$, then

$$D=\bigcup_{i<\omega}D_i,$$

where each D_i is isometric to the graph of a Lipschitz function $\phi_i \colon K_i \to \mathbb{R}$ with K_i being compact nowhere dense in \mathbb{R}^{n-1} .

In particular, such *D* must have Hausdorff dimension $\leq n - 1$,

while there is a separately continuous $f: \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue (so, n-Hausdorff) measure.

New results on sets D(f) for linearly continuous f

Theorem (KC and T. Glatzer: lower bound for $\mathcal{D}(\mathcal{F}_{1,n})$)

If D is a restriction of a convex $\phi: \mathbb{R}^{n-1} \to \mathbb{R}$ to a compact nowhere dense subset of \mathbb{R}^{n-1} , then D = D(f) for a linearly continuous $f: \mathbb{R}^n \to \mathbb{R}$.

For n = 2 the results remains true when ϕ is C^2 (continuously twice differentiable).

In particular, D may have positive (n-1)-Hausdorff measure.

Note a gap between classes of convex and Lipschitz functions

New results on sets D(f) for linearly continuous f

Theorem (KC and T. Glatzer: lower bound for $\mathcal{D}(\mathcal{F}_{1,n})$)

If D is a restriction of a convex $\phi: \mathbb{R}^{n-1} \to \mathbb{R}$ to a compact nowhere dense subset of \mathbb{R}^{n-1} , then D = D(f) for a linearly continuous $f: \mathbb{R}^n \to \mathbb{R}$.

For n = 2 the results remains true when ϕ is C^2 (continuously twice differentiable).

In particular, D may have positive (n-1)-Hausdorff measure.

Note a gap between classes of convex and Lipschitz functions

New results on sets D(f) for linearly continuous f

Theorem (KC and T. Glatzer: lower bound for $\mathcal{D}(\mathcal{F}_{1,n})$)

If D is a restriction of a convex $\phi: \mathbb{R}^{n-1} \to \mathbb{R}$ to a compact nowhere dense subset of \mathbb{R}^{n-1} , then D = D(f) for a linearly continuous $f: \mathbb{R}^n \to \mathbb{R}$.

For n = 2 the results remains true when ϕ is C^2 (continuously twice differentiable).

In particular, D may have positive (n-1)-Hausdorff measure.

Note a gap between classes of convex and Lipschitz functions

Outline

- Separate and linear continuity prehistory
- Discontinuity sets of separately/linearly continuous functions
- 3 Functions with continuous restrictions to *k*-flats
- 4 ${\cal F}$ -continuity, allowing curvy surfaces in ${\cal F}$
- 5 When F-continuity implies continuity?
- 6 Summary

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Recall: $\mathcal{F}_{k,n}$ – all k-dimensional flats (affine subspaces) of \mathbb{R}^n

$$P(x,y) = \frac{xy^2}{x^2+y^4}$$
 is discontinuous and $\mathcal{F}_{1,n}$ -continuous.

Theorem (KC, submitted)

$$f_n(\vec{x}) = \frac{x_0(x_0)^{4^0}(x_1)^{4^1} \cdots (x_{n-1})^{4^{n-1}}}{(x_0)^{2^n} + (x_1)^{2^{n+1}} + \cdots + (x_{n-1})^{2^{n+(n-1)}}} = \frac{x_0 \prod_{i=0}^{n-1} (x_i)^{2^{2i}}}{\sum_{i=0}^{n-1} (x_i)^{2^{n+i}}}$$

•
$$f_2(x_0, x_1) = \frac{(x_0)(x_0)(x_1)^4}{(x_0)^4 + (x_1)^8} = P((x_0)^2, (x_1)^2)$$

•
$$f_3(x_0, x_1, x_2) = \frac{(x_0)(x_0)(x_1)^4(x_2)^{16}}{(x_0)^8 + (x_1)^{16} + (x_2)^{32}}$$
, etc

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Recall: $\mathcal{F}_{k,n}$ – all k-dimensional flats (affine subspaces) of \mathbb{R}^n

$$P(x,y) = \frac{xy^2}{x^2+y^4}$$
 is discontinuous and $\mathcal{F}_{1,n}$ -continuous.

Theorem (KC, submitted)

$$f_n(\vec{x}) = \frac{x_0(x_0)^{4^0}(x_1)^{4^1} \cdots (x_{n-1})^{4^{n-1}}}{(x_0)^{2^n} + (x_1)^{2^{n+1}} + \cdots + (x_{n-1})^{2^{n+(n-1)}}} = \frac{x_0 \prod_{i=0}^{n-1} (x_i)^{2^{2i}}}{\sum_{i=0}^{n-1} (x_i)^{2^{n+i}}}$$

•
$$f_2(x_0, x_1) = \frac{(x_0)(x_0)(x_1)^4}{(x_0)^4 + (x_1)^8} = P((x_0)^2, (x_1)^2)$$

•
$$f_3(x_0, x_1, x_2) = \frac{(x_0)(x_0)(x_1)^4(x_2)^{16}}{(x_0)^8 + (x_1)^{16} + (x_2)^{32}}$$
, etc

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Recall: $\mathcal{F}_{k,n}$ – all k-dimensional flats (affine subspaces) of \mathbb{R}^n

 $P(x,y) = \frac{xy^2}{x^2+y^4}$ is discontinuous and $\mathcal{F}_{1,n}$ -continuous.

Theorem (KC, submitted)

$$f_n(\vec{x}) = \frac{x_0(x_0)^{4^0}(x_1)^{4^1} \cdots (x_{n-1})^{4^{n-1}}}{(x_0)^{2^n} + (x_1)^{2^{n+1}} + \cdots + (x_{n-1})^{2^{n+(n-1)}}} = \frac{x_0 \prod_{i=0}^{n-1} (x_i)^{2^{2i}}}{\sum_{i=0}^{n-1} (x_i)^{2^{n+i}}}$$

•
$$f_2(x_0, x_1) = \frac{(x_0)(x_0)(x_1)^4}{(x_0)^4 + (x_1)^8} = P((x_0)^2, (x_1)^2)$$

•
$$f_3(x_0, x_1, x_2) = \frac{(x_0)(x_0)(x_1)^4(x_2)^{16}}{(x_0)^8 + (x_1)^{16} + (x_2)^{32}}$$
, etc

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Recall: $\mathcal{F}_{k,n}$ – all k-dimensional flats (affine subspaces) of \mathbb{R}^n

 $P(x,y) = \frac{xy^2}{x^2+y^4}$ is discontinuous and $\mathcal{F}_{1,n}$ -continuous.

Theorem (KC, submitted)

$$f_n(\vec{x}) = \frac{x_0(x_0)^{4^0}(x_1)^{4^1} \cdots (x_{n-1})^{4^{n-1}}}{(x_0)^{2^n} + (x_1)^{2^{n+1}} + \cdots + (x_{n-1})^{2^{n+(n-1)}}} = \frac{x_0 \prod_{i=0}^{n-1} (x_i)^{2^{2i}}}{\sum_{i=0}^{n-1} (x_i)^{2^{n+i}}}$$

•
$$f_2(x_0, x_1) = \frac{(x_0)(x_0)(x_1)^4}{(x_0)^4 + (x_1)^8} = P((x_0)^2, (x_1)^2)$$

•
$$f_3(x_0, x_1, x_2) = \frac{(x_0)(x_0)(x_1)^4(x_2)^{16}}{(x_0)^8 + (x_1)^{16} + (x_2)^{32}}$$
, etc

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Recall: $\mathcal{F}_{k,n}$ – all k-dimensional flats (affine subspaces) of \mathbb{R}^n

 $P(x,y) = \frac{xy^2}{x^2+y^4}$ is discontinuous and $\mathcal{F}_{1,n}$ -continuous.

Theorem (KC, submitted)

$$f_n(\vec{x}) = \frac{x_0(x_0)^{4^0}(x_1)^{4^1} \cdots (x_{n-1})^{4^{n-1}}}{(x_0)^{2^n} + (x_1)^{2^{n+1}} + \cdots + (x_{n-1})^{2^{n+(n-1)}}} = \frac{x_0 \prod_{i=0}^{n-1} (x_i)^{2^{2i}}}{\sum_{i=0}^{n-1} (x_i)^{2^{n+i}}}$$

•
$$f_2(x_0, x_1) = \frac{(x_0)(x_0)(x_1)^4}{(x_0)^4 + (x_1)^8} = P((x_0)^2, (x_1)^2)$$

•
$$f_3(x_0, x_1, x_2) = \frac{(x_0)(x_0)(x_1)^4(x_2)^{16}}{(x_0)^8 + (x_1)^{16} + (x_2)^{32}}$$
, etc

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Here \mathcal{F}_k denotes $\mathcal{F}_{k,n}$ and \mathcal{F}_k^+ denotes $\mathcal{F}_{k,n}^+$

 \mathcal{F}_n^+ - and \mathcal{F}_n -continuities are the standard continuity

Every function is \mathcal{F}_0^+ - and \mathcal{F}_0 -continuous

Theorem (KC and T. Glatzer, submitted)

For every $n \ge 2$,

None of the implications can be reversed

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Here \mathcal{F}_k denotes $\mathcal{F}_{k,n}$ and \mathcal{F}_k^+ denotes $\mathcal{F}_{k,n}^+$

 \mathcal{F}_n^+ - and \mathcal{F}_n -continuities are the standard continuity

Every function is \mathcal{F}_0^+ - and \mathcal{F}_0 -continuous

Theorem (KC and T. Glatzer, submitted

For every $n \ge 2$,

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Here \mathcal{F}_k denotes $\mathcal{F}_{k,n}$ and \mathcal{F}_k^+ denotes $\mathcal{F}_{k,n}^+$

 \mathcal{F}_n^+ - and \mathcal{F}_n -continuities are the standard continuity

Every function is \mathcal{F}_0^+ - and \mathcal{F}_0 -continuous

Theorem (KC and T. Glatzer, submitted

For every $n \ge 2$,

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Here \mathcal{F}_k denotes $\mathcal{F}_{k,n}$ and \mathcal{F}_k^+ denotes $\mathcal{F}_{k,n}^+$

 \mathcal{F}_n^+ - and \mathcal{F}_n -continuities are the standard continuity

Every function is \mathcal{F}_0^+ - and \mathcal{F}_0 -continuous

Theorem (KC and T. Glatzer, submitted)

For every $n \ge 2$,

Can $\mathcal{F}_{k,n}$ -continuity imply continuity?

Here \mathcal{F}_k denotes $\mathcal{F}_{k,n}$ and \mathcal{F}_k^+ denotes $\mathcal{F}_{k,n}^+$

 \mathcal{F}_n^+ - and \mathcal{F}_n -continuities are the standard continuity

Every function is \mathcal{F}_0^+ - and \mathcal{F}_0 -continuous

Theorem (KC and T. Glatzer, submitted)

For every $n \ge 2$,

On the families $\mathcal{D}_{k,n}^+ = \mathcal{D}(\mathcal{F}_{k,n}^+)$, $\mathcal{F}_{k,n}^+$ – right k-flats

Theorem (KC and T. Glatzer, submitted)

For any k < n, $D \in \mathcal{D}^+_{k,n}$ iff D is an F_{σ} -set whose orthogonal projection $\pi_F[D]$ on any (n-k)-flat $F \in \mathcal{F}^+_{n-k}$ is of first category.

Corollary (KC and T. Glatzer)

 $P^k imes \mathbb{R}^{n-k} \in \mathcal{D}^+_{k-1,n} \setminus \mathcal{D}^+_{k,n}$ for any nowhere dense perfect $P \subset \mathbb{R}$. In particular, these sets can have positive n-dimensional Lebesgue measure.

$$\{\emptyset\} = \mathcal{D}_{n,n}^+ \subsetneq \mathcal{D}_{n-1,n}^+ \subsetneq \cdots \subsetneq \mathcal{D}_{1,n}^+ \subsetneq \mathcal{D}_{0,n}^+$$

Corollary (KC and T. Glatzer)

If $D \in \mathcal{D}_{k,n}$, then $\pi_F[D]$ is of first category for any $F \in \mathcal{F}_{n-k}$.

On the families $\mathcal{D}_{k,n}^+ = \mathcal{D}(\mathcal{F}_{k,n}^+), \, \mathcal{F}_{k,n}^+$ right k-flats

Theorem (KC and T. Glatzer, submitted)

For any k < n, $D \in \mathcal{D}_{k,n}^+$ iff D is an F_{σ} -set whose orthogonal projection $\pi_F[D]$ on any (n-k)-flat $F \in \mathcal{F}_{n-k}^+$ is of first category.

Corollary (KC and T. Glatzer)

 $P^k \times \mathbb{R}^{n-k} \in \mathcal{D}^+_{k-1,n} \setminus \mathcal{D}^+_{k,n}$ for any nowhere dense perfect $P \subset \mathbb{R}$. In particular, these sets can have positive n-dimensional Lebesgue measure.

$$\{\emptyset\} \ = \ \mathcal{D}_{n,n}^+ \ \subsetneq \ \mathcal{D}_{n-1,n}^+ \ \subsetneq \ \cdots \ \subsetneq \ \mathcal{D}_{1,n}^+ \ \subsetneq \ \mathcal{D}_{0,n}^+$$

Corollary (KC and T. Glatzer)

If $D \in \mathcal{D}_{k,n}$, then $\pi_F[D]$ is of first category for any $F \in \mathcal{F}_{n-k}$

On the families $\mathcal{D}_{k,n}^+ = \mathcal{D}(\mathcal{F}_{k,n}^+)$, $\mathcal{F}_{k,n}^+$ – right k-flats

Theorem (KC and T. Glatzer, submitted)

For any k < n, $D \in \mathcal{D}^+_{k,n}$ iff D is an F_{σ} -set whose orthogonal projection $\pi_F[D]$ on any (n-k)-flat $F \in \mathcal{F}^+_{n-k}$ is of first category.

Corollary (KC and T. Glatzer)

 $P^k \times \mathbb{R}^{n-k} \in \mathcal{D}^+_{k-1,n} \setminus \mathcal{D}^+_{k,n}$ for any nowhere dense perfect $P \subset \mathbb{R}$. In particular, these sets can have positive n-dimensional Lebesgue measure.

$$\{\emptyset\} \ = \ \mathcal{D}_{n,n}^+ \ \subsetneq \ \mathcal{D}_{n-1,n}^+ \ \subsetneq \ \cdots \ \subsetneq \ \mathcal{D}_{1,n}^+ \ \subsetneq \ \mathcal{D}_{0,n}^+$$

Corollary (KC and T. Glatzer)

If $D \in \mathcal{D}_{k,n}$, then $\pi_F[D]$ is of first category for any $F \in \mathcal{F}_{n-k}$.

On the families $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$, $\mathcal{F}_{k,n}$ – all k-flats

Theorem (KC and T. Glatzer, submitted)

For any 0 < k < n and $D \in \mathcal{D}_{k,n}$ there exists a sequence $\langle f_i \rangle_{i < \omega}$ of Lipschitz functions f_i from $V_i \in \mathcal{F}_{n-k}$ into a perpendicular k-flat whose graphs cover D.

So, every $D \in \mathcal{D}_{k,n}$ has Hausdorff dimension $\leq n - k$.

Proposition (KC and T. Glatzer)

 $\{0\}^k \times P \times \mathbb{R}^{n-k-1} \in \mathcal{D}_{k,n}$ for any compact nowhere dense $P \subset \mathbb{R}$. In particular,

 $\mathcal{D}_{k,n}$ contains the sets of positive (n-k)-Hausdorff measure.

On the families $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$, $\mathcal{F}_{k,n}$ – all k-flats

Theorem (KC and T. Glatzer, submitted)

For any 0 < k < n and $D \in \mathcal{D}_{k,n}$ there exists a sequence $\langle f_i \rangle_{i < \omega}$ of Lipschitz functions f_i from $V_i \in \mathcal{F}_{n-k}$ into a perpendicular k-flat whose graphs cover D. So, every $D \in \mathcal{D}_{k,n}$ has Hausdorff dimension $\leq n - k$.

Proposition (KC and T. Glatzer)

 $\{0\}^k \times P \times \mathbb{R}^{n-k-1} \in \mathcal{D}_{k,n}$ for any compact nowhere dense $P \subset \mathbb{R}$. In particular,

 $\mathcal{D}_{k,n}$ contains the sets of positive (n-k)-Hausdorff measure.

On the families $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$, $\mathcal{F}_{k,n}$ – all k-flats

Theorem (KC and T. Glatzer, submitted)

For any 0 < k < n and $D \in \mathcal{D}_{k,n}$ there exists a sequence $\langle f_i \rangle_{i < \omega}$ of Lipschitz functions f_i from $V_i \in \mathcal{F}_{n-k}$ into a perpendicular k-flat whose graphs cover D.

So, every $D \in \mathcal{D}_{k,n}$ has Hausdorff dimension $\leq n - k$.

Proposition (KC and T. Glatzer)

 $\{0\}^k \times P \times \mathbb{R}^{n-k-1} \in \mathcal{D}_{k,n}$ for any compact nowhere dense $P \subset \mathbb{R}$. In particular,

 $\mathcal{D}_{k,n}$ contains the sets of positive (n-k)-Hausdorff measure

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

On the families $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$, $\mathcal{F}_{k,n}$ – all k-flats

Theorem (KC and T. Glatzer, submitted)

For any 0 < k < n and $D \in \mathcal{D}_{k,n}$ there exists a sequence $\langle f_i \rangle_{i < \omega}$ of Lipschitz functions f_i from $V_i \in \mathcal{F}_{n-k}$ into a perpendicular k-flat whose graphs cover D. So, every $D \in \mathcal{D}_{k,n}$ has Hausdorff dimension $\leq n - k$.

Proposition (KC and T. Glatzer)

 $\{0\}^k \times P \times \mathbb{R}^{n-k-1} \in \mathcal{D}_{k,n}$ for any compact nowhere dense $P \subset \mathbb{R}$. In particular,

 $\mathcal{D}_{k,n}$ contains the sets of positive (n-k)-Hausdorff measure.

On the families $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$, $\mathcal{F}_{k,n}$ – all k-flats

Theorem (KC and T. Glatzer, submitted)

For any 0 < k < n and $D \in \mathcal{D}_{k,n}$ there exists a sequence $\langle f_i \rangle_{i < \omega}$ of Lipschitz functions f_i from $V_i \in \mathcal{F}_{n-k}$ into a perpendicular k-flat whose graphs cover D. So, every $D \in \mathcal{D}_{k,n}$ has Hausdorff dimension $\leq n - k$.

Proposition (KC and T. Glatzer)

 $\{0\}^k \times P \times \mathbb{R}^{n-k-1} \in \mathcal{D}_{k,n}$ for any compact nowhere dense $P \subset \mathbb{R}$. In particular,

 $\mathcal{D}_{k,n}$ contains the sets of positive (n-k)-Hausdorff measure.

Characterization of $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$ for $k \geq n/2$

Definition (Topology on $\mathcal{F}_{k,n}$)

Generated by a subbase formed by the sets $\mathcal{F}(U) = \{ F \in \mathcal{F}_k : F \cap U \neq \emptyset \}$, where U is an open set in \mathbb{R}^n .

Definition (Ideal $\mathcal{J}_{k,n}$)

 $\mathcal{J}_{k,n}$ – all bounded sets $S \subset \mathbb{R}^n$ s.t. there is an increasing sequence $\langle \mathcal{L}_i \colon i < \omega \rangle$ of closed subsets of \mathcal{F}_k such that $\bigcup_{i < \omega} \mathcal{L}_i = \mathcal{F}_k$ and, for every $i < \omega$, S is disjoint with the interior $\operatorname{int}(\bigcup \mathcal{L}_i)$ of the set $\bigcup \mathcal{L}_i \subset \mathbb{R}^n$.

Theorem (KC and T. Glatzer, submitted)

Characterization of $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$ for $k \geq n/2$

Definition (Topology on $\mathcal{F}_{k,n}$)

Generated by a subbase formed by the sets $\mathcal{F}(U) = \{ F \in \mathcal{F}_k : F \cap U \neq \emptyset \}$, where U is an open set in \mathbb{R}^n .

Definition (Ideal $\mathcal{J}_{k,n}$)

 $\mathcal{J}_{k,n}$ – all bounded sets $S \subset \mathbb{R}^n$ s.t. there is an increasing sequence $\langle \mathcal{L}_i \colon i < \omega \rangle$ of closed subsets of \mathcal{F}_k such that $\bigcup_{i < \omega} \mathcal{L}_i = \mathcal{F}_k$ and, for every $i < \omega$, S is disjoint with the interior $\operatorname{int}(\bigcup \mathcal{L}_i)$ of the set $\bigcup \mathcal{L}_i \subset \mathbb{R}^n$.

Theorem (KC and T. Glatzer, submitted)

Characterization of $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$ for $k \geq n/2$

Definition (Topology on $\mathcal{F}_{k,n}$)

Generated by a subbase formed by the sets $\mathcal{F}(U) = \{ F \in \mathcal{F}_k : F \cap U \neq \emptyset \}$, where U is an open set in \mathbb{R}^n .

Definition (Ideal $\mathcal{J}_{k,n}$)

 $\mathcal{J}_{k,n}$ – all bounded sets $S \subset \mathbb{R}^n$ s.t. there is an increasing sequence $\langle \mathcal{L}_i \colon i < \omega \rangle$ of closed subsets of \mathcal{F}_k such that $\bigcup_{i < \omega} \mathcal{L}_i = \mathcal{F}_k$ and, for every $i < \omega$, S is disjoint with the interior $\operatorname{int}(\bigcup \mathcal{L}_i)$ of the set $\bigcup \mathcal{L}_i \subset \mathbb{R}^n$.

Theorem (KC and T. Glatzer, submitted

Characterization of $\mathcal{D}_{k,n} = \mathcal{D}(\mathcal{F}_{k,n})$ for $k \geq n/2$

Definition (Topology on $\mathcal{F}_{k,n}$)

Generated by a subbase formed by the sets $\mathcal{F}(U) = \{ F \in \mathcal{F}_k : F \cap U \neq \emptyset \}$, where U is an open set in \mathbb{R}^n .

Definition (Ideal $\mathcal{J}_{k,n}$)

 $\mathcal{J}_{k,n}$ – all bounded sets $S \subset \mathbb{R}^n$ s.t. there is an increasing sequence $\langle \mathcal{L}_i \colon i < \omega \rangle$ of closed subsets of \mathcal{F}_k such that $\bigcup_{i < \omega} \mathcal{L}_i = \mathcal{F}_k$ and, for every $i < \omega$, S is disjoint with the interior $\operatorname{int}(\bigcup \mathcal{L}_i)$ of the set $\bigcup \mathcal{L}_i \subset \mathbb{R}^n$.

Theorem (KC and T. Glatzer, submitted)

Outline

- Separate and linear continuity prehistory
- 2 Discontinuity sets of separately/linearly continuous functions
- 3 Functions with continuous restrictions to *k*-flats
- 4 \mathcal{F} -continuity, allowing curvy surfaces in \mathcal{F}
- 5 When F-continuity implies continuity?
- 6 Summary

More history; \mathcal{F} consisting of graphs of functions

Scheefer 1890, Lebesgue 1905: for A = analytic functions

A-continuity (for n = 2) does not imply continuity.

Theorem ([Rosenthal 1955]

- D^2 -continuity (for n=2) does not imply continuity; however
- C^1 -continuity is equivalent to continuity (for every n),

where C^1 and D^2 are, respectively, continuously and twice differentiable functions.

More history; \mathcal{F} consisting of graphs of functions

Scheefer 1890, Lebesgue 1905: for A = analytic functions

A-continuity (for n = 2) does not imply continuity.

Γheorem ([Rosenthal 1955]

- D^2 -continuity (for n=2) does not imply continuity; however
- C^1 -continuity is equivalent to continuity (for every n),

where C^1 and D^2 are, respectively, continuously and twice differentiable functions.

More history; \mathcal{F} consisting of graphs of functions

Scheefer 1890, Lebesgue 1905: for A = analytic functions

A-continuity (for n = 2) does not imply continuity.

Theorem ([Rosenthal <mark>1955</mark>])

- D^2 -continuity (for n=2) does not imply continuity; however
- C^1 -continuity is equivalent to continuity (for every n),

where C^1 and D^2 are, respectively, continuously and twice differentiable functions.

More history; \mathcal{F} consisting of graphs of functions

Scheefer 1890, Lebesgue 1905: for A = analytic functions

A-continuity (for n = 2) does not imply continuity.

Theorem ([Rosenthal <mark>1955</mark>])

- D^2 -continuity (for n=2) does not imply continuity; however
- C^1 -continuity is equivalent to continuity (for every n),

where C^1 and D^2 are, respectively, continuously and twice differentiable functions.

More history; \mathcal{F} consisting of graphs of functions

Scheefer 1890, Lebesgue 1905: for A = analytic functions

A-continuity (for n = 2) does not imply continuity.

Theorem ([Rosenthal <mark>1955</mark>])

- D^2 -continuity (for n=2) does not imply continuity; however
- C¹-continuity is equivalent to continuity (for every n),

where C^1 and D^2 are, respectively, continuously and twice differentiable functions.

More history; \mathcal{F} consisting of graphs of functions

Scheefer 1890, Lebesgue 1905: for A = analytic functions

A-continuity (for n = 2) does not imply continuity.

Theorem ([Rosenthal <mark>1955</mark>])

- D^2 -continuity (for n=2) does not imply continuity; however
- C¹-continuity is equivalent to continuity (for every n),

where C^1 and D^2 are, respectively, continuously and twice differentiable functions.

On sets D(f) for D^2 -continuous functions f

Remember (Rosenthal) that C^1 -continuity implies continuity.

Theorem (KC and T. Glatzer)

There exists a D^2 -continuous $f \colon \mathbb{R}^2 \to \mathbb{R}$ for which D(f) has positive one dimensional Hausdorff measure.

The example can be "lifted" to a D^2 -continuous $f: \mathbb{R}^n \to \mathbb{R}$ with D(f) of positive (n-1)-Hausdorff measure.

On sets D(f) for D^2 -continuous functions f

Remember (Rosenthal) that C^1 -continuity implies continuity.

Theorem (KC and T. Glatzer)

There exists a D^2 -continuous $f: \mathbb{R}^2 \to \mathbb{R}$ for which D(f) has positive one dimensional Hausdorff measure.

The example can be "lifted" to a D^2 -continuous $f: \mathbb{R}^n \to \mathbb{R}$ with D(f) of positive (n-1)-Hausdorff measure.

On sets D(f) for D^2 -continuous functions f

Remember (Rosenthal) that C^1 -continuity implies continuity.

Theorem (KC and T. Glatzer)

There exists a D^2 -continuous $f: \mathbb{R}^2 \to \mathbb{R}$ for which D(f) has positive one dimensional Hausdorff measure.

The example can be "lifted" to a D^2 -continuous $f: \mathbb{R}^n \to \mathbb{R}$ with D(f) of positive (n-1)-Hausdorff measure.

Outline

- Separate and linear continuity prehistory
- 2 Discontinuity sets of separately/linearly continuous functions
- 3 Functions with continuous restrictions to *k*-flats
- 4 \mathcal{F} -continuity, allowing curvy surfaces in \mathcal{F}
- 5 When \mathcal{F} -continuity implies continuity?
- Summary

• $\mathcal{D}(\text{all converging sequences}) = \emptyset$.

Luzin's 1948 text: If $f_h(x) = f(x, h(x))$ is continuous for every continuous h, then f(x, y) is continuous. In particular,

• $\mathcal{D}(\mathcal{C}(\mathbb{R})) = \emptyset$ (only graphs from x to y!)

- $\mathcal{D}(\text{"}C^1\text{"}) = \emptyset$ (we allow infinite derivatives)
- $\mathcal{D}(D^1) \neq \emptyset$ (basically, example of KC and TG)

• $\mathcal{D}(\text{all converging sequences}) = \emptyset$.

Luzin's 1948 text: If $f_h(x) = f(x, h(x))$ is continuous for every continuous h, then f(x, y) is continuous. In particular,

• $\mathcal{D}(\mathcal{C}(\mathbb{R})) = \emptyset$ (only graphs from x to y!)

- $\mathcal{D}(\text{"}C^1\text{"}) = \emptyset$ (we allow infinite derivatives)
- $\mathcal{D}(D^1) \neq \emptyset$ (basically, example of KC and TG)

• $\mathcal{D}(\text{all converging sequences}) = \emptyset$.

Luzin's 1948 text: If $f_h(x) = f(x, h(x))$ is continuous for every continuous h, then f(x, y) is continuous. In particular,

• $\mathcal{D}(\mathcal{C}(\mathbb{R})) = \emptyset$ (only graphs from x to y!)

- $\mathcal{D}(\text{"}C^1\text{"}) = \emptyset$ (we allow infinite derivatives)
- $\mathcal{D}(D^1) \neq \emptyset$ (basically, example of KC and TG)

• $\mathcal{D}(\text{all converging sequences}) = \emptyset$.

Luzin's 1948 text: If $f_h(x) = f(x, h(x))$ is continuous for every continuous h, then f(x, y) is continuous. In particular,

• $\mathcal{D}(\mathcal{C}(\mathbb{R})) = \emptyset$ (only graphs from x to y!)

- $\mathcal{D}("C^1") = \emptyset$ (we allow infinite derivatives)
- $\mathcal{D}(D^1) \neq \emptyset$ (basically, example of KC and TG)

• $\mathcal{D}(\text{all converging sequences}) = \emptyset$.

Luzin's 1948 text: If $f_h(x) = f(x, h(x))$ is continuous for every continuous h, then f(x, y) is continuous. In particular,

• $\mathcal{D}(\mathcal{C}(\mathbb{R})) = \emptyset$ (only graphs from x to y!)

- $\mathcal{D}("C^1") = \emptyset$ (we allow infinite derivatives)
- $\mathcal{D}(D^1) \neq \emptyset$ (basically, example of KC and TG)

T(h)-continuity, T(h) translations of single h

Theorem (KC and Joseph Rosenblatt, submitted)

- $\mathcal{D}(T(h)) \neq \emptyset$ for every continuous $h: \mathbb{R}^n \to \mathbb{R}$
- $\mathcal{D}(T(h)) = \emptyset$ for a Baire class 1 function $h: \mathbb{R}^n \to \mathbb{R}$; We can have $D(h) = P^n$ with P compact measure 0.

- $\mathcal{D}(T(X)) = \emptyset$ for any Borel set $X \subset \mathbb{R}^n$ which is either of positive measure or of the second category
- $\mathcal{D}(T(P^n)) = \emptyset$ for a compact $P \subset \mathbb{R}$ of measure zero.

T(h)-continuity, T(h) translations of single h

Theorem (KC and Joseph Rosenblatt, submitted)

- $\mathcal{D}(T(h)) \neq \emptyset$ for every continuous $h: \mathbb{R}^n \to \mathbb{R}$
- $\mathcal{D}(T(h)) = \emptyset$ for a Baire class 1 function $h: \mathbb{R}^n \to \mathbb{R}$; We can have $D(h) = P^n$ with P compact measure 0.

- $\mathcal{D}(T(X)) = \emptyset$ for any Borel set $X \subset \mathbb{R}^n$ which is either of positive measure or of the second category
- $\mathcal{D}(T(P^n)) = \emptyset$ for a compact $P \subset \mathbb{R}$ of measure zero.

T(h)-continuity, T(h) translations of single h

Theorem (KC and Joseph Rosenblatt, submitted)

- $\mathcal{D}(T(h)) \neq \emptyset$ for every continuous $h: \mathbb{R}^n \to \mathbb{R}$
- $\mathcal{D}(T(h)) = \emptyset$ for a Baire class 1 function $h: \mathbb{R}^n \to \mathbb{R}$; We can have $D(h) = P^n$ with P compact measure 0.

- $\mathcal{D}(T(X)) = \emptyset$ for any Borel set $X \subset \mathbb{R}^n$ which is either of positive measure or of the second category
- $\mathcal{D}(T(P^n)) = \emptyset$ for a compact $P \subset \mathbb{R}$ of measure zero.

T(h)-continuity, T(h) translations of single h

Theorem (KC and Joseph Rosenblatt, submitted)

- $\mathcal{D}(T(h)) \neq \emptyset$ for every continuous $h: \mathbb{R}^n \to \mathbb{R}$
- $\mathcal{D}(T(h)) = \emptyset$ for a Baire class 1 function $h: \mathbb{R}^n \to \mathbb{R}$; We can have $D(h) = P^n$ with P compact measure 0.

- $\mathcal{D}(T(X)) = \emptyset$ for any Borel set $X \subset \mathbb{R}^n$ which is either of positive measure or of the second category
- $\mathcal{D}(T(P^n)) = \emptyset$ for a compact $P \subset \mathbb{R}$ of measure zero.

T(h)-continuity, T(h) translations of single h

Theorem (KC and Joseph Rosenblatt, submitted)

- $\mathcal{D}(T(h)) \neq \emptyset$ for every continuous $h: \mathbb{R}^n \to \mathbb{R}$
- $\mathcal{D}(T(h)) = \emptyset$ for a Baire class 1 function $h: \mathbb{R}^n \to \mathbb{R}$; We can have $D(h) = P^n$ with P compact measure 0.

Theorem (KC and Joseph Rosenblatt)

- $\mathcal{D}(T(X)) = \emptyset$ for any Borel set $X \subset \mathbb{R}^n$ which is either of positive measure or of the second category
- $\mathcal{D}(T(P^n)) = \emptyset$ for a compact $P \subset \mathbb{R}$ of measure zero.

I(h)-continuity, I(h) all isometric copies of h

Theorem (KC and Joseph Rosenblatt, submitted)

• I(h)-continuity does not imply T(h)-continuity

For
$$h: \mathbb{R} \to \mathbb{Q}$$
, $h(x) = 0$ for all $x \notin \mathbb{Q} \cap [0, 1]$,

 $h
estriction \mathbb{Q} \cap [0,1]$ having a dense graph in $[0,1] imes \mathbb{R}$.

- Does there exist a continuous $h: \mathbb{R} \to \mathbb{R}$ with $\mathcal{D}(I(h)) = \emptyset$?
- What can be said about the sets X with $\mathcal{D}(I(X)) = \emptyset$?

I(h)-continuity, I(h) all isometric copies of h

Theorem (KC and Joseph Rosenblatt, submitted)

• *I*(*h*)-continuity does not imply *T*(*h*)-continuity

For
$$h: \mathbb{R} \to \mathbb{Q}$$
, $h(x) = 0$ for all $x \notin \mathbb{Q} \cap [0, 1]$,

 $h \upharpoonright \mathbb{Q} \cap [0,1]$ having a dense graph in $[0,1] \times \mathbb{R}$.

- Does there exist a continuous $h: \mathbb{R} \to \mathbb{R}$ with $\mathcal{D}(I(h)) = \emptyset$?
- What can be said about the sets X with $\mathcal{D}(I(X)) = \emptyset$?

I(h)-continuity, I(h) all isometric copies of h

Theorem (KC and Joseph Rosenblatt, submitted)

• *I(h)-continuity does not imply T(h)-continuity*

For
$$h: \mathbb{R} \to \mathbb{Q}$$
, $h(x) = 0$ for all $x \notin \mathbb{Q} \cap [0, 1]$,

 $h \upharpoonright \mathbb{Q} \cap [0,1]$ having a dense graph in $[0,1] \times \mathbb{R}$.

- Does there exist a continuous $h: \mathbb{R} \to \mathbb{R}$ with $\mathcal{D}(I(h)) = \emptyset$?
- What can be said about the sets X with $\mathcal{D}(I(X)) = \emptyset$?

I(h)-continuity, I(h) all isometric copies of h

Theorem (KC and Joseph Rosenblatt, submitted)

• *I*(*h*)-continuity does not imply *T*(*h*)-continuity

For
$$h: \mathbb{R} \to \mathbb{Q}$$
, $h(x) = 0$ for all $x \notin \mathbb{Q} \cap [0, 1]$,

 $h \upharpoonright \mathbb{Q} \cap [0,1]$ having a dense graph in $[0,1] \times \mathbb{R}$.

- Does there exist a continuous $h: \mathbb{R} \to \mathbb{R}$ with $\mathcal{D}(I(h)) = \emptyset$?
- What can be said about the sets X with $\mathcal{D}(I(X)) = \emptyset$?

Outline

- Separate and linear continuity prehistory
- 2 Discontinuity sets of separately/linearly continuous functions
- 3 Functions with continuous restrictions to *k*-flats
- 4 \mathcal{F} -continuity, allowing curvy surfaces in \mathcal{F}
- When \mathcal{F} -continuity implies continuity?
- 6 Summary

- Big progress on characterization of sets of points of discontinuity of linearly continuous function
- Deep study of functions on \mathbb{R}^n continuous when restricted to k-dimensional affine spaces
- Construction of D²-continuous functions f with large set of points of discontinuity
- Discussion a theorem of Luzin
- Discussion of when T(h)-continuity implies continuity, for h
 being a graph of function

- Big progress on characterization of sets of points of discontinuity of linearly continuous function
- Deep study of functions on \mathbb{R}^n continuous when restricted to k-dimensional affine spaces
- Construction of D²-continuous functions f with large set of points of discontinuity
- Discussion a theorem of Luzin
- Discussion of when T(h)-continuity implies continuity, for h
 being a graph of function

- Big progress on characterization of sets of points of discontinuity of linearly continuous function
- Deep study of functions on \mathbb{R}^n continuous when restricted to k-dimensional affine spaces
- Construction of D²-continuous functions f with large set of points of discontinuity
- Discussion a theorem of Luzin
- Discussion of when T(h)-continuity implies continuity, for h
 being a graph of function

- Big progress on characterization of sets of points of discontinuity of linearly continuous function
- Deep study of functions on \mathbb{R}^n continuous when restricted to k-dimensional affine spaces
- Construction of D²-continuous functions f with large set of points of discontinuity
- Discussion a theorem of Luzin
- Discussion of when T(h)-continuity implies continuity, for h
 being a graph of function

- Big progress on characterization of sets of points of discontinuity of linearly continuous function
- Deep study of functions on \mathbb{R}^n continuous when restricted to k-dimensional affine spaces
- Construction of D²-continuous functions f with large set of points of discontinuity
- Discussion a theorem of Luzin
- Discussion of when T(h)-continuity implies continuity, for h
 being a graph of function

Thank you for your attention!

