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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

Basic definitions; separate and linear continuities

We consider mainly functions f : Rn → R, n = 2,3,4, . . . fixed.

For a fixed collection F of subsets of Rn and f : Rn → R

f is F-continuous iff f � F is continuous for every F ∈ F

For k ≤ n, Fk ,n: all k -dimensional flats (affine subspaces) of Rn

F+
k ,n: all F ∈ Fk ,n parallel to spaces spanned by coordinate vectors

f is separately continuous iff it is F+
1,n-continuous

f is linearly continuous iff it is F1,n-continuous
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Continuity vs F-continuity: prehistory (for n = 2)

Cauchy, in 1821 book Cours d’analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples:

J. Thomae calculus text 1870 (and 1873), due to E. Heine:

F (x , y) = sin
(
4 arctan

( y
x

))
for 〈x , y〉 6= 〈0,0〉, F (0,0) = 0.

1884 treatise on calculus by Genocchi and Peano:

P(x , y) = xy2

x2+y4 for 〈x , y〉 6= 〈0,0〉, P(0,0) = 0.

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 2



History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

Continuity vs F-continuity: prehistory (for n = 2)

Cauchy, in 1821 book Cours d’analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples:

J. Thomae calculus text 1870 (and 1873), due to E. Heine:

F (x , y) = sin
(
4 arctan

( y
x

))
for 〈x , y〉 6= 〈0,0〉, F (0,0) = 0.

1884 treatise on calculus by Genocchi and Peano:

P(x , y) = xy2

x2+y4 for 〈x , y〉 6= 〈0,0〉, P(0,0) = 0.

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 2



History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

Continuity vs F-continuity: prehistory (for n = 2)

Cauchy, in 1821 book Cours d’analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples:

J. Thomae calculus text 1870 (and 1873), due to E. Heine:

F (x , y) = sin
(
4 arctan

( y
x

))
for 〈x , y〉 6= 〈0,0〉, F (0,0) = 0.

1884 treatise on calculus by Genocchi and Peano:

P(x , y) = xy2

x2+y4 for 〈x , y〉 6= 〈0,0〉, P(0,0) = 0.

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 2



History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

Continuity vs F-continuity: prehistory (for n = 2)

Cauchy, in 1821 book Cours d’analyse, incorrectly claimed:

separate continuity implies continuity!

Counterexamples:

J. Thomae calculus text 1870 (and 1873), due to E. Heine:

F (x , y) = sin
(
4 arctan

( y
x

))
for 〈x , y〉 6= 〈0,0〉, F (0,0) = 0.

1884 treatise on calculus by Genocchi and Peano:

P(x , y) = xy2

x2+y4 for 〈x , y〉 6= 〈0,0〉, P(0,0) = 0.

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 2



History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

Baire classification of separate continuous functions
Theorem ([Baire 1899] for n = 1, [Lebesgue 1905] for all n)

Every separately continuous function on Rn is Baire class n − 1,
but need not be of lower Baire class, as

for every Baire class n − 1 function g : [0,1]→ R there is a
separately continuous function F on Rn such that

F (x , . . . , x) = g(x) for all x ∈ [0,1].

Corollary

Every linearly continuous function on Rn is Baire class n − 1

Question (I believe open and very interesting)

Is the Baire class the best in the Corollary above?

Nothing is known for n ≥ 3.
Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 3
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Baire classification of linearly continuous functions?

Corollary

Every linearly continuous function on Rn is Baire class n − 1

Question (I believe open and very interesting)

Is the Baire class the best in the Corollary above?

Theorem (KC, very partial answer, preliminary work)

For every Baire class 1 function g : [0,1]→ R there is a linearly
continuous function F on R2 such that

F (x , x2) = g(x) for all x ∈ [0,1].
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Sets of discontinuity points for F-continuous functions

D(f ) denotes the set of points of discontinuity of f

D(F) = {D(f ) : f is F-continuous}

Theorem (Kershner 1943, characterization of D(F+
1,n))

For any set D ⊂ Rn

D = D(f ) for some separately continuous f on Rn iff
D is an Fσ set and every orthogonal projection of D onto a
coordinate hyperplane has first category image.

Question (Kronrod 1944, still not fully answered)

Find a characterization D(F1,n) (similar to that of Kershner)
that is, of sets D(f ) for linearly continuous functions f

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 5
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On sets D(f ) for linearly continuous functions f

Theorem (Slobodnik 1976: upper bound for D(F1,n))

If D ⊂ Rn is the set of discontinuity points of some linearly
continuous function f : Rn → R, then

D =
⋃
i<ω

Di ,

where each Di is isometric to the graph of a Lipschitz function
φi : Ki → R with Ki being compact nowhere dense in Rn−1.

In particular, such D must have Hausdorff dimension ≤ n − 1,

while there is a separately continuous f : Rn → R with
D(f ) having positive Lebesgue (so, n-Hausdorff) measure.

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 6
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New results on sets D(f ) for linearly continuous f

Theorem (KC and T. Glatzer: lower bound for D(F1,n))

If D is a restriction of a convex φ : Rn−1 → R to a compact
nowhere dense subset of Rn−1, then
D = D(f ) for a linearly continuous f : Rn → R.

For n = 2 the results remains true when φ is C2 (continuously
twice differentiable).

In particular, D may have positive (n − 1)-Hausdorff measure.

Note a gap between classes of convex and Lipschitz functions
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Can Fk ,n-continuity imply continuity?

Recall: Fk ,n – all k -dimensional flats (affine subspaces) of Rn

P(x , y) = xy2

x2+y4 is discontinuous and F1,n-continuous.

Theorem (KC, submitted)

fn(~x) =
x0(x0)

40
(x1)

41 · · · (xn−1)
4n−1

(x0)2n + (x1)2n+1 + · · ·+ (xn−1)2n+(n−1) =
x0
∏n−1

i=0 (xi)
22i∑n−1

i=0 (xi)2n+i

for ~x = 〈x0, x1, . . . , xn−1〉 6= θ, fn(θ) = 0, is Fn−1,n-continuous
but not continuous (on a path ~p(t) = 〈t2n

, t2n−1
, . . . , t22

, t21〉).

f2(x0, x1) =
(x0)(x0)(x1)

4

(x0)4+(x1)8 = P((x0)
2, (x1)

2)

f3(x0, x1, x2) =
(x0)(x0)(x1)

4(x2)
16

(x0)8+(x1)16+(x2)32 , etc

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 8
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(x0)8+(x1)16+(x2)32 , etc
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

Can Fk ,n-continuity imply continuity?

Here Fk denotes Fk ,n and F+
k denotes F+

k ,n

F+
n - and Fn-continuities are the standard continuity

Every function is F+
0 - and F0-continuous

Theorem (KC and T. Glatzer, submitted)
For every n ≥ 2,

Fn-cont =⇒ Fn−1-cont =⇒ · · · =⇒ F1-cont
m ⇓ ⇓

F+
n -cont =⇒ F+

n−1-cont =⇒ · · · =⇒ F+
1 -cont

None of the implications can be reversed
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

On the families D+
k ,n = D(F+

k ,n), F
+
k ,n – right k -flats

Theorem (KC and T. Glatzer, submitted)

For any k < n, D ∈ D+
k ,n iff D is an Fσ-set whose orthogonal

projection πF [D] on any (n− k)-flat F ∈ F+
n−k is of first category.

Corollary (KC and T. Glatzer)

Pk × Rn−k ∈ D+
k−1,n \ D

+
k ,n for any nowhere dense perfect

P ⊂ R. In particular, these sets can have positive
n-dimensional Lebesgue measure.

{∅} = D+
n,n ( D+

n−1,n ( · · · ( D+
1,n ( D+

0,n

Corollary (KC and T. Glatzer)

If D ∈ Dk ,n, then πF [D] is of first category for any F ∈ Fn−k .
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

On the families Dk ,n = D(Fk ,n), Fk ,n – all k -flats
Theorem (KC and T. Glatzer, submitted)

For any 0 < k < n and D ∈ Dk ,n there exists a sequence 〈fi〉i<ω
of Lipschitz functions fi from Vi ∈ Fn−k into a perpendicular
k-flat whose graphs cover D.
So, every D ∈ Dk ,n has Hausdorff dimension ≤ n − k.

Proposition (KC and T. Glatzer)

{0}k × P × Rn−k−1 ∈ Dk ,n for any compact nowhere dense
P ⊂ R. In particular,
Dk ,n contains the sets of positive (n − k)-Hausdorff measure.

{∅} = Dn,n ( Dn−1,n ( · · · ( D1,n ( D0,n
‖ ∩ ∩ ‖
D+

n,n ( D+
n−1,n ( · · · ( D+

1,n ( D+
0,n
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

Characterization of Dk ,n = D(Fk ,n) for k ≥ n/2

Definition (Topology on Fk ,n)

Generated by a subbase formed by the sets
F(U) = {F ∈ Fk : F ∩ U 6= ∅}, where U is an open set in Rn.

Definition (Ideal Jk ,n)

Jk ,n – all bounded sets S ⊂ Rn s.t. there is an increasing
sequence 〈Li : i < ω〉 of closed subsets of Fk such that⋃

i<ω Li = Fk and, for every i < ω,
S is disjoint with the interior int(

⋃
Li) of the set

⋃
Li ⊂ Rn.

Theorem (KC and T. Glatzer, submitted)

Let 0 < k < n be such that k ≥ n
2 . A set D ⊂ Rn is in Dk ,n iff

D is a countable union of compact sets from Jk ,n.
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

Outline

1 Separate and linear continuity – prehistory

2 Discontinuity sets of separately/linearly continuous functions

3 Functions with continuous restrictions to k -flats

4 F-continuity, allowing curvy surfaces in F

5 When F-continuity implies continuity?

6 Summary
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

More history; F consisting of graphs of functions

Scheefer 1890, Lebesgue 1905: for A =analytic functions

A-continuity (for n = 2) does not imply continuity.

Theorem ([Rosenthal 1955])

D2-continuity (for n = 2) does not imply continuity; however
C1-continuity is equivalent to continuity (for every n),

where C1 and D2 are, respectively, continuously and twice
differentiable functions.

Here, functions are with respect of any of coordinate
hyperplanes, e.g., from x to y and from y to x .

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 13
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

On sets D(f ) for D2-continuous functions f

Remember (Rosenthal) that C1-continuity implies continuity.

Theorem (KC and T. Glatzer)

There exists a D2-continuous f : R2 → R for which D(f ) has
positive one dimensional Hausdorff measure.

The example can be “lifted” to a D2-continuous f : Rn → R with
D(f ) of positive (n − 1)-Hausdorff measure.
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

For which families F ⊂ P(R2), D(F) = ∅?

D(all converging sequences) = ∅.

Luzin’s 1948 text: If fh(x) = f (x ,h(x)) is continuous for every
continuous h, then f (x , y) is continuous. In particular,

D(C(R)) = ∅ (only graphs from x to y !)

Theorem (KC and Joseph Rosenblatt, submitted)

D(“C1”) = ∅ (we allow infinite derivatives)
D(D1) 6= ∅ (basically, example of KC and TG)

Krzysztof Chris Ciesielski On functions with continuous restrictions to various sets 15
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History D(F1,n) D(Fk,n) F -continuity T (h)-continuity Summary

T (h)-continuity, T (h) translations of single h

Theorem (KC and Joseph Rosenblatt, submitted)

D(T (h)) 6= ∅ for every continuous h : Rn → R
D(T (h)) = ∅ for a Baire class 1 function h : Rn → R;
We can have D(h) = Pn with P compact measure 0.

Theorem (KC and Joseph Rosenblatt)

D(T (X )) = ∅ for any Borel set X ⊂ Rn which is either of
positive measure or of the second category
D(T (Pn)) = ∅ for a compact P ⊂ R of measure zero.
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Deep study of functions on Rn continuous when restricted
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Discussion a theorem of Luzin
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Thank you for your attention!
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