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Keleti’s Perimeter to Area Conjecture (PAC)

The perimeter to area ratio of the union of finitely many unit
squares in a plane does not exceed 4.

I Problem 6 on the famous Hungarian Schweitzer Competition
in 1998. Show the perimeter to area ratio is bounded.

I Later that same year, Keleti published his Perimeter to Area
Conjecture that this bound is actually 4.

I To date, the best known bound is slightly less than 5.6.
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Gyenes’ Results

Theorem (Gyenes)

If the squares are oriented, the PAC is true.

Theorem (Gyenes)

If the squares have a common center, the PAC is true.

Theorem (Gyenes)

There exist congruent convex sets , E1
∼= E2 ⊂ R2 such that the

perimeter to area ratio for E1 ∪ E2 exceeds the perimeter to area
ratio for either one of them.
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A Convex Counterexample



A Tantalizing Tidbit

Suppose a counterexample exists. Then there is a counterexample
with a least number of squares. The Isoperimetric
Inequality yields

Theorem

If H =
⋃n

i=1 Hi is an optimal counterexample, then for each i ≤ n,
the area of Hi ∩ (H \ Hi ) >

π
4 .

Hio



Basic Notation

1. H =
⋃n

i=1 Hi is the finite union of unit squares Hi in R2.

2. p(H) is the perimeter of H.

3. α(H) denotes the area of H.

4. square ≡ unit square in R2.



Thinking Euclidean
If H ⊂ R2 is a square, then H can be parameterized by a point in
R3

whose coordinates are the center of H and the mod (π/2)
rotational displacement of H.

(s,t)
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Basic Notation Revisited
Suppose we are interested in unions of n unit squares Hi ;
H =

⋃n
i=1 Hi . Then the associated perimeter and area are maps:

1. p : R3n → R.

2. α : R3n → R.

3. κ ≡ p
α .

We’ll have a brief look at some continuity and differentiability of
these maps.
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Continuity of p and α
Now, α IS the area function afterall, Lipschitz in each coordinate,
so . . .

Theorem

α is continuous.

and p is the perimeter function after that, so . . .

Theorem

p is often discontinuous, but only with jump discontinuities.



Continuity of p and α
Now, α IS the area function afterall, Lipschitz in each coordinate,
so . . .

Theorem

α is continuous.

and p is the perimeter function after that, so . . .

Theorem

p is often discontinuous, but only with jump discontinuities.



Continuity of p and α
Now, α IS the area function afterall, Lipschitz in each coordinate,
so . . .

Theorem

α is continuous.

and p is the perimeter function after that, so . . .

Theorem

p is often discontinuous, but only with jump discontinuities.



Continuity of p and α
Now, α IS the area function afterall, Lipschitz in each coordinate,
so . . .

Theorem

α is continuous.

and p is the perimeter function after that, so . . .

Theorem

p is often discontinuous, but only with jump discontinuities.



Continuity of p and α
Now, α IS the area function afterall, Lipschitz in each coordinate,
so . . .

Theorem

α is continuous.

and p is the perimeter function after that, so . . .

Theorem

p is often discontinuous, but only with jump discontinuities.



Discontinuity of p

Consequently, let’s first restrict the domain somewhat to avoid
such unpleasantries.
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1. H ⊂ R2 has distinct rotational displacement if φi 6= φj

when i 6= j

2. H is vertex free if no vertex of Hi lies on the boundary of Hj

whenever i 6= j .

3. H is triple free if no point lies on the boundaries of three
distinct Hi ’s.

H is said to be in standard position provided H is all three.

Theorem (a brief aside)

The set of points which are in standard position is the complement
of a sparse set in the sense that it is a subset of the complement of
a countable union of monotonic surfaces and so are both residual
and of full measure in R3n.
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Continuity of p and α

Theorem

The perimeter function p is continuous at every point H ∈ R3n

which is in standard position.

a
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Differentiability of p and α

Here we are interested in the following questions:

1. Are p and α differentiable at points in standard position?

2. What IS the derivative at those points?

So we do the obvious:

1. compute the first partials and

2. show they’re continuous.
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Differentiability of p

Theorem

The perimeter function p : R3n → R+ is differentiable at every
point H ∈ R3n in standard position.

Outline of Proof.

1. Fix H ∈ R3n and 1 ≤ io ≤ n.

2. Fix a segment on the boundary of H.

3. Compute the contribution to each of the 3 partials, ∂p
∂sio

, ∂p
∂tio

and, ∂p
∂φio

.

∂p
∂φio

for example.
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∂p
∂φio

Case 1. The segment misses Hio .

In this case the contribution is 0.

Case 2. The segment lies on Hio .

Hio

Hio + (0, 0, δ)

a

b
a∗

b∗

Figure: [a, b] and [a∗, b∗]



Case 2. Computation

a∗ =
( x1 tanφa

tanφa − tan δ
,

x1 tanφa tan δ

tanφa − tan δ
− 1

2

)
b∗ =

( x2 tanφb

tanφb + tan δ
,

x2 tanφb tan δ

tanφb + tan δ
− 1

2

)
.

Hence, with some trigonometry and limit taking:

lim
δ→0

∣∣b∗ − a∗
∣∣− ∣∣b − a

∣∣
δ

=
∣∣b− a

∣∣(cotφb − cotφa).



Case 3.

Case 3. The segment intersects Hio but does not lie on it.

Hio

Hj

φa

a

b

Again, with some trigonometry and limit taking:

lim
δ→0

∣∣a∗ − a
∣∣

δ
=

d

sinφa

Oh yes, here is ”d.”



Case 3.

Case 3. The segment intersects Hio but does not lie on it.

Hio

Hj

φa

a

b

Again, with some trigonometry and limit taking:

lim
δ→0

∣∣a∗ − a
∣∣

δ
=

d

sinφa

Oh yes, here is ”d.”



∂p
∂sio

and ∂p
∂tio

These cases have congruent geometries and are handled
similarly to the case of ∂p

∂φio
.

But we still have area to deal with.
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Differentiability of α
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H with Hio Darkened

∂α
∂φio

Hio



H with Hio and Rotated Hio

∂α
∂φio

Hio



Pre Computations; What are the Variables?
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The Computations

∆α([a, b]) =

(x1
2 − x2

2) tanφa tanφb tan δ + tan2 δ(x2
2 tanφb + x1

2 tanφa)

2(tanφa − tan δ)(tanφb + tan δ)
.

∂α

∂φio

at [a,b] = lim
δ→0

∆α([a, b])

δ
=

x1
2 − x2

2

2
.
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∂α
∂sio

and ∂α
∂tio

These cases again have congruent geometries and are handled
similarly.



Where We’re Pushing the Pebble

Similar ground has been plowed in other lands. For example:

Theorem (Kneser-Paulson)

If a finite set of discs are rearranged so that the distance between
the centers of any pair decreases, then the area and the perimeter
of the union of the discs also decreases.



T H A N K Y O U !
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