L^{∞} -removable sets 0000 The continuous case

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Removable singularities for the equation $\operatorname{div} v = f$

Laurent Moonens

Université Paris-Sud

São Carlos, ICMC, June 3rd, 2013

(日) (日) (日) (日) (日) (日) (日)

Overview

2 L^{∞} -removable sets

- A sufficient condition for a set to be removable
- A necessary condition for a set to be removable
- Comparison with the Laplace equation

The continuous case 3

- A sufficient condition for a set to be removable
- A comparison with the Laplace equation
- A necessary condition for a set to be removable

A perspective

Overview

Definition and preliminaries

- L^{∞} -removable set
 - A sufficient condition for a set to be removable
 - A necessary condition for a set to be removable
 - Comparison with the Laplace equation

3 The continuous case

- A sufficient condition for a set to be removable
- A comparison with the Laplace equation
- A necessary condition for a set to be removable

4 A perspective

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(日) (日) (日) (日) (日) (日) (日)

Removable sets

Let \mathscr{B} be a collection of measurable vector fields $v : \mathbb{R}^n \to \mathbb{R}^n$ for which the distributional divergence

div
$$v: \mathscr{D}(\mathbb{R}^n) \to \mathbb{R}, \varphi \mapsto -\int_{\mathbb{R}^n} v \cdot \nabla \varphi \, dx$$

is well-defined.

Definition

A compact set $S \subseteq \mathbb{R}^n$ is said to be \mathscr{B} -removable for the equation div v = 0 iff for every $v \in \mathscr{B}$, the equality

```
\langle \operatorname{div} v, \varphi \rangle = 0 for any \varphi \in \mathscr{D}(\mathbb{R}^n) with \operatorname{supp} \varphi \cap S = \emptyset
```

implies that div $v \equiv 0$ (in \mathbb{R}^n).

Removable sets

Let \mathscr{B} be a collection of measurable vector fields $v : \mathbb{R}^n \to \mathbb{R}^n$ for which the distributional divergence

div
$$v: \mathscr{D}(\mathbb{R}^n) \to \mathbb{R}, \varphi \mapsto -\int_{\mathbb{R}^n} v \cdot \nabla \varphi \, dx$$

is well-defined.

Definition

A compact set $S \subseteq \mathbb{R}^n$ is said to be \mathscr{B} -removable for the equation div v = 0 iff for every $v \in \mathscr{B}$, the equality

$$\langle \operatorname{div} v, \varphi \rangle = 0$$
 for any $\varphi \in \mathscr{D}(\mathbb{R}^n)$ with $\operatorname{supp} \varphi \cap S = \emptyset$

implies that div $v \equiv 0$ (in \mathbb{R}^n).

Removable sets (II)

Given a collection $\mathscr F$ of measurable functions such that $\nabla \mathscr F\subseteq \mathscr B$ and using the equality

$$\Delta u = \operatorname{div}(\nabla u),$$

it is natural to compare the previous definition with the following.

Definition

A compact set $S \subseteq \mathbb{R}^n$ is said to be \mathscr{F} -removable for the equation $\Delta v = 0$ iff for every $f \in \mathscr{F}$,

 $\Delta u = 0$ outside S implies $\Delta u \equiv 0$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Removable sets (II)

Given a collection \mathscr{F} of measurable functions such that $\nabla \mathscr{F}\subseteq \mathscr{B}$ and using the equality

$$\Delta u = \operatorname{div}(\nabla u),$$

it is natural to compare the previous definition with the following.

Definition

A compact set $S \subseteq \mathbb{R}^n$ is said to be \mathscr{F} -removable for the equation $\Delta v = 0$ iff for every $f \in \mathscr{F}$,

 $\Delta u = 0$ outside S implies $\Delta u \equiv 0$.

The following lemma is easy to obtain by smoothing the characteristic function of suitable neighborhoods of *S*.

Lemma (De Pauw, 2000)

Given a compact set $S \subseteq \mathbb{R}^n$ with $\mathscr{H}^{n-1}(S) < +\infty$, there exists a sequence $(\chi_k) \subseteq \mathscr{D}(\mathbb{R}^n)$ satisfying $0 \le \chi_k \le 1$ for each $k \in \mathbb{N}$, together with the following properties :

• $\chi_k = 1$ in a neighborhood of *S* for each $k \in \mathbb{N}$;

•
$$\int_{\mathbb{R}^n} \chi_k \, dx o 0, \, k o \infty$$
 ;

•
$$\overline{\lim}_{k\to\infty} \int_{\mathbb{R}^n} |\nabla \chi_k| \, dx \leq C(n) \mathscr{H}^{n-1}(E).$$

・ロ・・ 「「・・・ ・ 「」・ うくの

The following lemma is easy to obtain by smoothing the characteristic function of suitable neighborhoods of *S*.

Lemma (De Pauw, 2000)

Given a compact set $S \subseteq \mathbb{R}^n$ with $\mathscr{H}^{n-1}(S) < +\infty$, there exists a sequence $(\chi_k) \subseteq \mathscr{D}(\mathbb{R}^n)$ satisfying $0 \le \chi_k \le 1$ for each $k \in \mathbb{N}$, together with the following properties :

• $\chi_k = 1$ in a neighborhood of *S* for each $k \in \mathbb{N}$;

•
$$\int_{\mathbb{R}^n} \chi_k \, dx o 0$$
, $k o \infty$;

•
$$\overline{\lim}_{k\to\infty} \int_{\mathbb{R}^n} |\nabla \chi_k| \, dx \le C(n) \mathscr{H}^{n-1}(E).$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ◆ ● ◆ ◆ ●

The following lemma is easy to obtain by smoothing the characteristic function of suitable neighborhoods of *S*.

Lemma (De Pauw, 2000)

Given a compact set $S \subseteq \mathbb{R}^n$ with $\mathscr{H}^{n-1}(S) < +\infty$, there exists a sequence $(\chi_k) \subseteq \mathscr{D}(\mathbb{R}^n)$ satisfying $0 \le \chi_k \le 1$ for each $k \in \mathbb{N}$, together with the following properties :

•
$$\chi_k = 1$$
 in a neighborhood of *S* for each $k \in \mathbb{N}$;

•
$$\int_{\mathbb{R}^n} \chi_k \, dx o 0, \, k o \infty$$
 ;

•
$$\overline{\lim}_{k\to\infty} \int_{\mathbb{R}^n} |\nabla \chi_k| \, dx \le C(n) \mathscr{H}^{n-1}(E).$$

◆□ → ◆□ → ∢ 三 → ∢ □ → ◆□ →

The following lemma is easy to obtain by smoothing the characteristic function of suitable neighborhoods of *S*.

Lemma (De Pauw, 2000)

Given a compact set $S \subseteq \mathbb{R}^n$ with $\mathscr{H}^{n-1}(S) < +\infty$, there exists a sequence $(\chi_k) \subseteq \mathscr{D}(\mathbb{R}^n)$ satisfying $0 \le \chi_k \le 1$ for each $k \in \mathbb{N}$, together with the following properties :

•
$$\chi_k = 1$$
 in a neighborhood of *S* for each $k \in \mathbb{N}$;

•
$$\int_{\mathbb{R}^n} \chi_k \, dx \to 0, \, k \to \infty$$
 ;

•
$$\overline{\lim}_{k\to\infty} \int_{\mathbb{R}^n} |\nabla \chi_k| \, dx \leq C(n) \mathscr{H}^{n-1}(E).$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Overview

Definition and preliminaries

2 L^{∞} -removable sets

- A sufficient condition for a set to be removable
- A necessary condition for a set to be removable
- Comparison with the Laplace equation

3 The continuous case

- A sufficient condition for a set to be removable
- A comparison with the Laplace equation
- A necessary condition for a set to be removable

A perspective

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A sufficient condition to be L^{∞} -removable

Observation (De Pauw, 2000)

If the compact $S \subseteq \mathbb{R}^n$ satisfies $\mathscr{H}^{n-1}(S) = 0$, then it is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0.

Sketch of the proof. Assume that $\mathscr{H}^{n-1}(S) = 0$, fix $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ and suppose that div v = 0 outside *S*.

If (χ_k) is the sequence associated to *S* by the previous lemma, then we get for $\varphi \in \mathscr{D}(\mathbb{R}^n)$:

$$\begin{split} \langle \operatorname{div} v, \varphi \rangle &= -\int_{\mathbb{R}^n} v \cdot \nabla(\chi_k \varphi) \, dx \\ &\leq \|v\|_{\infty} [\|\nabla \varphi\|_{\infty} \|\chi_k\|_1 + \|\varphi\|_{\infty} \|\nabla \chi_k\|_1] \to 0, k \to \infty, \end{split}$$

A sufficient condition to be L^{∞} -removable

Observation (De Pauw, 2000)

If the compact $S \subseteq \mathbb{R}^n$ satisfies $\mathscr{H}^{n-1}(S) = 0$, then it is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0.

Sketch of the proof. Assume that $\mathscr{H}^{n-1}(S) = 0$, fix $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ and suppose that div v = 0 outside *S*.

If (χ_k) is the sequence associated to *S* by the previous lemma, then we get for $\varphi \in \mathscr{D}(\mathbb{R}^n)$:

$$\begin{split} \langle \operatorname{div} v, \varphi \rangle &= -\int_{\mathbb{R}^n} v \cdot \nabla(\chi_k \varphi) \, dx \\ &\leq \|v\|_{\infty} [\|\nabla \varphi\|_{\infty} \|\chi_k\|_1 + \|\varphi\|_{\infty} \|\nabla \chi_k\|_1] \to 0, k \to \infty, \end{split}$$

A sufficient condition to be L^{∞} -removable

Observation (De Pauw, 2000)

If the compact $S \subseteq \mathbb{R}^n$ satisfies $\mathscr{H}^{n-1}(S) = 0$, then it is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0.

Sketch of the proof. Assume that $\mathscr{H}^{n-1}(S) = 0$, fix $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ and suppose that div v = 0 outside *S*.

If (χ_k) is the sequence associated to *S* by the previous lemma, then we get for $\varphi \in \mathscr{D}(\mathbb{R}^n)$:

$$\begin{split} \langle \operatorname{div} \nu, \varphi \rangle &= -\int_{\mathbb{R}^n} \nu \cdot \nabla(\chi_k \varphi) \, dx \\ &\leq \|\nu\|_{\infty} [\|\nabla \varphi\|_{\infty} \|\chi_k\|_1 + \|\varphi\|_{\infty} \|\nabla \chi_k\|_1] \to 0, k \to \infty, \end{split}$$

A sufficient condition to be L^{∞} -removable

Observation (De Pauw, 2000)

If the compact $S \subseteq \mathbb{R}^n$ satisfies $\mathscr{H}^{n-1}(S) = 0$, then it is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0.

Sketch of the proof. Assume that $\mathscr{H}^{n-1}(S) = 0$, fix $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ and suppose that div v = 0 outside *S*.

If (χ_k) is the sequence associated to *S* by the previous lemma, then we get for $\varphi \in \mathscr{D}(\mathbb{R}^n)$:

$$\begin{split} \langle \operatorname{div} v, \varphi \rangle &= -\int_{\mathbb{R}^n} v \cdot \nabla(\chi_k \varphi) \, dx \\ &\leq \|v\|_{\infty} [\|\nabla \varphi\|_{\infty} \|\chi_k\|_1 + \|\varphi\|_{\infty} \|\nabla \chi_k\|_1] \to 0, k \to \infty, \end{split}$$

A sufficient condition to be L^{∞} -removable

Observation (De Pauw, 2000)

If the compact $S \subseteq \mathbb{R}^n$ satisfies $\mathscr{H}^{n-1}(S) = 0$, then it is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0.

Sketch of the proof. Assume that $\mathscr{H}^{n-1}(S) = 0$, fix $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ and suppose that div v = 0 outside *S*.

If (χ_k) is the sequence associated to *S* by the previous lemma, then we get for $\varphi \in \mathscr{D}(\mathbb{R}^n)$:

$$\begin{split} \langle \operatorname{div} v, \varphi \rangle &= -\int_{\mathbb{R}^n} v \cdot \nabla(\chi_k \varphi) \, dx \\ &\leq \|v\|_{\infty} [\|\nabla \varphi\|_{\infty} \|\chi_k\|_1 + \|\varphi\|_{\infty} \|\nabla \chi_k\|_1] \to 0, k \to \infty, \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A necessary condition to be L^{∞} -removable

Proposition (M., 2006)

If the compact set $S \subseteq \mathbb{R}^n$ is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for div v = 0, then $\mathscr{H}^{n-1}(S) = 0$.

- Assume that $0 < \mathscr{H}^{n-1}(S) < +\infty$.
- Choose a (nontrivial) Radon measure μ supported in *S* satisfying $\mu(B[x, r]) \leq Mr^{n-1}$ (Frostman).
- Show that $\mu = \operatorname{div} v$ for some $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A necessary condition to be L^{∞} -removable

Proposition (M., 2006)

If the compact set $S \subseteq \mathbb{R}^n$ is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for div v = 0, then $\mathscr{H}^{n-1}(S) = 0$.

- Assume that $0 < \mathscr{H}^{n-1}(S) < +\infty$.
- Choose a (nontrivial) Radon measure μ supported in *S* satisfying $\mu(B[x, r]) \leq Mr^{n-1}$ (Frostman).
- Show that $\mu = \operatorname{div} v$ for some $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A necessary condition to be L^{∞} -removable

Proposition (M., 2006)

If the compact set $S \subseteq \mathbb{R}^n$ is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for div v = 0, then $\mathscr{H}^{n-1}(S) = 0$.

- Assume that $0 < \mathscr{H}^{n-1}(S) < +\infty$.
- Choose a (nontrivial) Radon measure μ supported in *S* satisfying $\mu(B[x, r]) \leq Mr^{n-1}$ (Frostman).
- Show that $\mu = \operatorname{div} v$ for some $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

(日) (日) (日) (日) (日) (日) (日)

A necessary condition to be L^{∞} -removable

Proposition (M., 2006)

If the compact set $S \subseteq \mathbb{R}^n$ is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for div v = 0, then $\mathscr{H}^{n-1}(S) = 0$.

- Assume that $0 < \mathscr{H}^{n-1}(S) < +\infty$.
- Choose a (nontrivial) Radon measure μ supported in *S* satisfying $\mu(B[x, r]) \leq Mr^{n-1}$ (Frostman).
- Show that $\mu = \operatorname{div} v$ for some $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

(日) (日) (日) (日) (日) (日) (日)

A necessary condition to be L^{∞} -removable

Proposition (M., 2006)

If the compact set $S \subseteq \mathbb{R}^n$ is $L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ -removable for div v = 0, then $\mathscr{H}^{n-1}(S) = 0$.

- Assume that $0 < \mathscr{H}^{n-1}(S) < +\infty$.
- Choose a (nontrivial) Radon measure μ supported in *S* satisfying $\mu(B[x, r]) \leq Mr^{n-1}$ (Frostman).
- Show that $\mu = \operatorname{div} v$ for some $v \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

Definition and preliminaries	L^{∞} -removable sets	The continuous case	A perspective
	0000		

Last step of the proof :

 $\bullet\,$ observe that the growth condition on μ guarantees that one has

$$\int_{\mathbb{R}^n} arphi \, d\mu \leq C(n,M) \|
abla arphi \|_{L^1}$$

for all $\varphi \in \mathscr{D}(\mathbb{R}^n)$.

If we let

$$X := \{ u \in L^{n/(n-1)}(\mathbb{R}^n) : \nabla u \in L^1(\mathbb{R}^n, \mathbb{R}^n) \}$$

- Yet $T: X \to L^1, u \mapsto -\nabla u$ is injective.
- So T^* is surjective and $\mu = T^*(g)$ for some $g \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.
- The proof is complete for $T^*g = \operatorname{div} g$.

Bollindon and prominidation

Last step of the proof :

 $\bullet\,$ observe that the growth condition on μ guarantees that one has

$$\int_{\mathbb{R}^n} arphi \, d\mu \leq C(n,M) \|
abla arphi \|_{L^1}$$

for all $\varphi \in \mathscr{D}(\mathbb{R}^n)$.

If we let

$$X := \{ u \in L^{n/(n-1)}(\mathbb{R}^n) : \nabla u \in L^1(\mathbb{R}^n, \mathbb{R}^n) \}$$

- Yet $T: X \to L^1, u \mapsto -\nabla u$ is injective.
- So T^* is surjective and $\mu = T^*(g)$ for some $g \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.
- The proof is complete for $T^*g = \operatorname{div} g$.

Detinition and breliminaria	0
	-0

L^{∞} -remov	able sets
0000	

Last step of the proof :

 $\bullet\,$ observe that the growth condition on μ guarantees that one has

$$\int_{\mathbb{R}^n} arphi \, d\mu \leq C(n,M) \|
abla arphi \|_{L^1}$$

for all $\varphi \in \mathscr{D}(\mathbb{R}^n)$.

If we let

$$X := \{ u \in L^{n/(n-1)}(\mathbb{R}^n) : \nabla u \in L^1(\mathbb{R}^n, \mathbb{R}^n) \}$$

be endowed by the norm $||u||_X := ||\nabla u||_1$, this yields $\mu \in X^*$. • Yet $T: X \to L^1, u \mapsto -\nabla u$ is injective.

- So T^* is surjective and $\mu = T^*(g)$ for some $g \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.
- The proof is complete for $T^*g = \operatorname{div} g$.

Definition	and	prolin	ninori	
Demmuon	anu	preili	IIIIIaII	62

L^{∞} -removable	sets
0000	

Last step of the proof :

 $\bullet\,$ observe that the growth condition on μ guarantees that one has

$$\int_{\mathbb{R}^n} arphi \, d\mu \leq C(n,M) \|
abla arphi \|_{L^1}$$

for all $\varphi \in \mathscr{D}(\mathbb{R}^n)$.

If we let

$$X := \{u \in L^{n/(n-1)}(\mathbb{R}^n) : \nabla u \in L^1(\mathbb{R}^n, \mathbb{R}^n)\}$$

- Yet $T: X \to L^1, u \mapsto -\nabla u$ is injective.
- So T^* is surjective and $\mu = T^*(g)$ for some $g \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.
- The proof is complete for $T^*g = \operatorname{div} g$.

FD /1 1.1				
1 lotupitu	on ond	Drol	1001001	100
DEILIIII	опапо		IIIIIai	

L^{∞} -remov	able sets
0000	

(日) (日) (日) (日) (日) (日) (日)

Last step of the proof :

 $\bullet\,$ observe that the growth condition on μ guarantees that one has

$$\int_{\mathbb{R}^n} arphi \, d\mu \leq C(n,M) \|
abla arphi \|_{L^1}$$

for all $\varphi \in \mathscr{D}(\mathbb{R}^n)$.

If we let

$$X := \{ u \in L^{n/(n-1)}(\mathbb{R}^n) : \nabla u \in L^1(\mathbb{R}^n, \mathbb{R}^n) \}$$

- Yet $T: X \to L^1, u \mapsto -\nabla u$ is injective.
- So T^* is surjective and $\mu = T^*(g)$ for some $g \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.
- The proof is complete for $T^*g = \operatorname{div} g$.

D-finiti					
Detiniti	ion a	andı	oreii	minai	ies

L^{∞} -remov	able sets
0000	

(日) (日) (日) (日) (日) (日) (日)

Last step of the proof :

 $\bullet\,$ observe that the growth condition on μ guarantees that one has

$$\int_{\mathbb{R}^n} arphi \, d\mu \leq C(n,M) \|
abla arphi \|_{L^1}$$

for all $\varphi \in \mathscr{D}(\mathbb{R}^n)$.

If we let

$$X := \{ u \in L^{n/(n-1)}(\mathbb{R}^n) : \nabla u \in L^1(\mathbb{R}^n, \mathbb{R}^n) \}$$

- Yet $T: X \to L^1, u \mapsto -\nabla u$ is injective.
- So T^* is surjective and $\mu = T^*(g)$ for some $g \in L^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.
- The proof is complete for $T^*g = \operatorname{div} g$.

Comparison with the Laplace equation.

Theorem (David-Mattila, 1999)

If the compact set $S \subseteq \mathbb{R}^2$ satisfying $0 < \mathscr{H}^1(S) < +\infty$ is purely non 1-rectifiable, then *S* is Lip (\mathbb{R}^2)-removable for the Laplace equation.

Theorem (Nazarov-Tolsa-Volberg, 2012 for n > 2)

If the compact set $S \subseteq \mathbb{R}^n$ satisfying $0 < \mathscr{H}^{n-1}(S) < +\infty$ is purely non (n-1)-rectifiable, then S is $\operatorname{Lip}(\mathbb{R}^n)$ -removable for the Laplace equation.

▲日 → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

(日) (日) (日) (日) (日) (日) (日)

Comparison with the Laplace equation.

Theorem (David-Mattila, 1999)

If the compact set $S \subseteq \mathbb{R}^2$ satisfying $0 < \mathscr{H}^1(S) < +\infty$ is purely non 1-rectifiable, then *S* is Lip (\mathbb{R}^2)-removable for the Laplace equation.

Theorem (Nazarov-Tolsa-Volberg, 2012 for n > 2)

If the compact set $S \subseteq \mathbb{R}^n$ satisfying $0 < \mathscr{H}^{n-1}(S) < +\infty$ is purely non (n-1)-rectifiable, then *S* is Lip (\mathbb{R}^n) -removable for the Laplace equation.

Overview

Definition and preliminaries

- L^{∞} -removable sets
 - A sufficient condition for a set to be removable
 - A necessary condition for a set to be removable
 - Comparison with the Laplace equation

3 The continuous case

- A sufficient condition for a set to be removable
- A comparison with the Laplace equation
- A necessary condition for a set to be removable

A perspective

A sufficient condition to be C^0 -removable

Observation (Pfeffer)

Given $v \in C^0(\mathbb{R}^n, \mathbb{R}^n)$, let $F := \operatorname{div} v$. For all $\varepsilon > 0$ and all compact set $K \subseteq \mathbb{R}^n$, there exists $\theta > 0$ such that

 $F(\varphi) \le \theta \|\varphi\|_1 + \varepsilon \|\nabla\varphi\|_1$

holds for any $\varphi \in \mathscr{D}_K(\mathbb{R}^n)$.

- In fact (De Pauw-Pfeffer, 2008), the above condition characterizes all distributions *F* ∈ 𝒴(ℝⁿ)* which *are* the distributional divergence of some *v* ∈ *C*⁰(ℝⁿ, ℝⁿ).
- Hence if S ⊆ ℝⁿ is compact and satisfies ℋⁿ⁻¹(S) < +∞, then it is C⁰(ℝⁿ, ℝⁿ)-removable for div v = 0.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition and preliminaries

 L^{∞} -removable sets

The continuous case

A sufficient condition to be C^0 -removable

Observation (Pfeffer)

Given $v \in C^0(\mathbb{R}^n, \mathbb{R}^n)$, let $F := \operatorname{div} v$. For all $\varepsilon > 0$ and all compact set $K \subseteq \mathbb{R}^n$, there exists $\theta > 0$ such that

 $F(\varphi) \le \theta \|\varphi\|_1 + \varepsilon \|\nabla\varphi\|_1$

holds for any $\varphi \in \mathscr{D}_K(\mathbb{R}^n)$.

- In fact (De Pauw-Pfeffer, 2008), the above condition characterizes all distributions *F* ∈ 𝔅(ℝⁿ)* which *are* the distributional divergence of some *v* ∈ *C*⁰(ℝⁿ, ℝⁿ).
- Hence if S ⊆ ℝⁿ is compact and satisfies ℋⁿ⁻¹(S) < +∞, then it is C⁰(ℝⁿ, ℝⁿ)-removable for div v = 0.

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Definition and preliminaries

 L^{∞} -removable sets

The continuous case ●○○

(日) (日) (日) (日) (日) (日) (日)

A sufficient condition to be C^0 -removable

Observation (Pfeffer)

Given $v \in C^0(\mathbb{R}^n, \mathbb{R}^n)$, let $F := \operatorname{div} v$. For all $\varepsilon > 0$ and all compact set $K \subseteq \mathbb{R}^n$, there exists $\theta > 0$ such that

 $F(\varphi) \le \theta \|\varphi\|_1 + \varepsilon \|\nabla\varphi\|_1$

holds for any $\varphi \in \mathscr{D}_K(\mathbb{R}^n)$.

In fact (De Pauw-Pfeffer, 2008), the above condition characterizes all distributions *F* ∈ 𝒴(ℝⁿ)* which *are* the distributional divergence of some *v* ∈ *C*⁰(ℝⁿ, ℝⁿ).

Hence if S ⊆ ℝⁿ is compact and satisfies ℋⁿ⁻¹(S) < +∞, then it is C⁰(ℝⁿ, ℝⁿ)-removable for div v = 0.

Definition and preliminaries

 L^{∞} -removable sets

The continuous case

A perspective

A sufficient condition to be C^0 -removable

Observation (Pfeffer)

Given $v \in C^0(\mathbb{R}^n, \mathbb{R}^n)$, let $F := \operatorname{div} v$. For all $\varepsilon > 0$ and all compact set $K \subseteq \mathbb{R}^n$, there exists $\theta > 0$ such that

 $F(\varphi) \le \theta \|\varphi\|_1 + \varepsilon \|\nabla\varphi\|_1$

holds for any $\varphi \in \mathscr{D}_K(\mathbb{R}^n)$.

- In fact (De Pauw-Pfeffer, 2008), the above condition characterizes all distributions *F* ∈ 𝒴(ℝⁿ)* which *are* the distributional divergence of some *v* ∈ *C*⁰(ℝⁿ, ℝⁿ).
- Hence if S ⊆ ℝⁿ is compact and satisfies ℋⁿ⁻¹(S) < +∞, then it is C⁰(ℝⁿ, ℝⁿ)-removable for div v = 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Comparison with the Laplace equation

Proposition (de Valeriola-M., 2010)

- (A) if S ⊆ ℝⁿ is compact and if ℋⁿ⁻¹ ∟S is σ-finite, then S is C⁰(ℝⁿ, ℝⁿ)-removable for the equation div v = 0;
 (Note : latent in De Pauw-Pfeffer, 2003)
- (B) there exists a compact set $S \subseteq \mathbb{R}^n$ such that :
 - *S* is $C^1(\mathbb{R}^n)$ -removable for the Laplace equation ;
 - *S* is *not* $C^0(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0.

◆□ → ▲□ → ▲目 → ▲目 → ▲□ →

Comparison with the Laplace equation

Proposition (de Valeriola-M., 2010)

(A) if S ⊆ ℝⁿ is compact and if ℋⁿ⁻¹ ∟ S is σ-finite, then S is C⁰(ℝⁿ, ℝⁿ)-removable for the equation div v = 0;
 (Note : latent in De Pauw-Pfeffer, 2003)

(B) there exists a compact set $S \subseteq \mathbb{R}^n$ such that :

S is C¹(Rⁿ)-removable for the Laplace equation;
S is not C⁰(Rⁿ, Rⁿ)-removable for the equation div v = 0.

(日) (日) (日) (日) (日) (日) (日)

Comparison with the Laplace equation

Proposition (de Valeriola-M., 2010)

- (A) if S ⊆ ℝⁿ is compact and if ℋⁿ⁻¹ ∟ S is σ-finite, then S is C⁰(ℝⁿ, ℝⁿ)-removable for the equation div v = 0;
 (Note : latent in De Pauw-Pfeffer, 2003)
- (B) there exists a compact set $S \subseteq \mathbb{R}^n$ such that :
 - *S* is *C*¹(**R**^{*n*})-removable for the Laplace equation ;
 - *S* is *not* $C^0(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0.

(日) (日) (日) (日) (日) (日) (日)

Comparison with the Laplace equation

Proposition (de Valeriola-M., 2010)

- (A) if S ⊆ ℝⁿ is compact and if ℋⁿ⁻¹ ∟ S is σ-finite, then S is C⁰(ℝⁿ, ℝⁿ)-removable for the equation div v = 0;
 (Note : latent in De Pauw-Pfeffer, 2003)
- (B) there exists a compact set $S \subseteq \mathbb{R}^n$ such that :
 - *S* is *C*¹(**R**^{*n*})-removable for the Laplace equation ;
 - *S* is not $C^0(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0.

Theorem (Ponce, 2012)

A compact set $S \subseteq \mathbb{R}^n$ is $C^0(\mathbb{R}^n, \mathbb{R}^n)$ -removable for the equation div v = 0 if and only if $\mathscr{H}^{n-1} \sqcup S$ is σ -finite.

Overview

Definition and preliminaries

- L^{∞} -removable sets
 - A sufficient condition for a set to be removable
 - A necessary condition for a set to be removable
 - Comparison with the Laplace equation

3 The continuous case

- A sufficient condition for a set to be removable
- A comparison with the Laplace equation
- A necessary condition for a set to be removable

A perspective

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A perspective

- Weighted Lebesgue spaces : natural framework to solve div v = 0 on non-smooth open domains (see *e.g.* Duran-Russ-Tchamitchian, 2010).
- In *w*-weighted lebesgue space : analogous sufficient and necessary removability conditions where *r* → *rⁿ⁻¹* in the definition of Hausdorff measure is replaced by

$$P_w(B(x,r))$$
 and $\frac{1}{r} \int_{B[x,r]} w \, dx$

(M.-Russ, 201X).

• A complete NSC in a narrow range of cases (*ibid*.).

A perspective

- Weighted Lebesgue spaces : natural framework to solve $\operatorname{div} v = 0$ on non-smooth open domains (see *e.g.* Duran-Russ-Tchamitchian, 2010).
- In *w*-weighted lebesgue space : analogous sufficient and necessary removability conditions where *r* → *r*ⁿ⁻¹ in the definition of Hausdorff measure is replaced by

$$P_w(B(x,r))$$
 and $\frac{1}{r} \int_{B[x,r]} w \, dx$

(M.-Russ, 201X).

• A complete NSC in a narrow range of cases (*ibid.*).

A perspective

- Weighted Lebesgue spaces : natural framework to solve $\operatorname{div} v = 0$ on non-smooth open domains (see *e.g.* Duran-Russ-Tchamitchian, 2010).
- In *w*-weighted lebesgue space : analogous sufficient and necessary removability conditions where *r* → *r*ⁿ⁻¹ in the definition of Hausdorff measure is replaced by

$$P_w(B(x,r))$$
 and $\frac{1}{r} \int_{B[x,r]} w \, dx$

(M.-Russ, 201X).

• A complete NSC in a narrow range of cases (*ibid*.).