Maximal lineability of the set of continuous surjections

Nacib Gurgel Albuquerque

Federal University of Paraíba, Brazil

The Sugarcane Symposium in Real Analysis XXXVII
ICMC USP–São Carlos
6th June 2013
Sumary

1. Brief overview throughout history
 - Unexpected objects
 - Lineability and surjective functions

2. Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?
 - A CS from \mathbb{R} onto \mathbb{R}^2
 - A CS from \mathbb{R}^m onto \mathbb{R}^n

3. $S_{m,n}$ lineability
 - A family of CS functions
 - Main result

4. References
Sumary

1 Brief overview throughout history
 - Unexpected objects
 - Lineability and surjective functions

2 Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?
 - A CS from \mathbb{R} onto \mathbb{R}^2
 - A CS from \mathbb{R}^m onto \mathbb{R}^n

3 $S_{m,n}$ lineability
 - A family of CS functions
 - Main result

4 References
Unexpected objects...

In 1872, K. Weierstrass provided the classical example of a function that was continuous everywhere but differentiable nowhere:

\[f(x) = \sum_{n=0}^{\infty} a_n \cos(bn\pi x) \]

where \(0 < a < 1 \), \(b \) is an odd integer and \(ab > 1 + \frac{3\pi}{2} \). "Weierstrass' monsters" were also found by B. Bolzano (1830), M. Ch. Cellérier (1830), B. Riemann (1861) and H. Hankel (1870).
Unexpected objects...

In 1872, K. Weierstrass provided the classical example of a function that was continuous everywhere but differentiable nowhere:

\[f(x) = \sum_{n=0}^{+\infty} a^n \cos(b^n \pi x) \]

where \(0 < a < 1 \), \(b \) is an odd integer and \(ab > 1 + 3\pi/2 \).
In 1872, K. Weierstrass provided the classical example of a function that was continuous everywhere but differentiable nowhere:

\[f(x) = \sum_{n=0}^{+\infty} a^n \cos(b^n \pi x) \]

where \(0 < a < 1\), \(b\) is an odd integer and \(ab > 1 + 3\pi/2\).

“Weierstrass’ monsters” were also found by B. Bolzano (1830), M.Ch. Cellérier (1830), B. Riemann (1861) and H. Hankel (1870).
Brief overview throughout history

...appears more often than we might think?
...appears more often than we might think?

Theorem (Gurariy, 1966)

The set of continuous nowhere differentiable functions on \([0, 1]\) contains, except for the zero function, an infinite linear space.
The set of continuous nowhere differentiable functions on $[0, 1]$ contains, except for the zero function, a infinite linear space.

Let X be a topological vector space, M a subset of X and μ a cardinal number. M is said to be μ-lineable (μ-spaceable) if $M \cup \{0\}$ contains a vector space (a closed vector space) μ-dimensional.
Everywhere surjective functions
Everywhere surjective functions

Definition

An everywhere surjective (ES) function $f \in \mathbb{R}^\mathbb{R}$ satisfies $f(I) = \mathbb{R}$, for every non degenerated interval $I \subset \mathbb{R}$.
Everywhere surjective functions

Definition

An everywhere surjective (ES) function $f \in \mathbb{R}^\mathbb{R}$ satisfies $f(I) = \mathbb{R}$, for every non degenerated interval $I \subset \mathbb{R}$.

Theorem (Aron, Gurariy and Seoane-Sepúlveda, 2005)

The space $ES(\mathbb{R})$ of ES maps is maximal lineable in $\mathbb{R}^\mathbb{R}$.
Everywhere surjective functions

Definition

An everywhere surjective (ES) function \(f \in \mathbb{R}^\mathbb{R} \) satisfies \(f(I) = \mathbb{R} \), for every non degenerated interval \(I \subset \mathbb{R} \).

Theorem (Aron, Gurariy and Seoane-Sepúlveda, 2005)

The space \(\text{ES}(\mathbb{R}) \) of ES maps is maximal lineable in \(\mathbb{R}^\mathbb{R} \).

Indeed, other classes of functions with even worse behaviour are as large as the ES ones

Theorem (J. L. Gámez-Merino, 2011)

The space \(\text{J}(\mathbb{R}) \) of Jones functions is maximal lineable in \(\mathbb{R}^\mathbb{R} \).
these previous classes mentioned are very exotic, furthermore these are nowhere continuous.
these previous classes mentioned are very exotic, furthermore these are nowhere continuous.

So, a natural question would be
these previous classes mentioned are very exotic, furthermore these are nowhere continuous.

So, a natural question would be

add \textit{continuity condition} condition and

and ask about \textit{lineability} in this situation.
Sumary

1. Brief overview throughout history
 - Unexpected objects
 - Lineability and surjective functions

2. Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?
 - A CS from \mathbb{R} onto \mathbb{R}^2
 - A CS from \mathbb{R}^m onto \mathbb{R}^n

3. $S_{m,n}$ lineability
 - A family of CS functions
 - Main result

4. References
Let m and n be positive integers. Throughout this we shall denote

$$S_{m,n} = \{ f : \mathbb{R}^m \to \mathbb{R}^n ; f \text{ is continuous and surjective} \}.$$
Let m and n be positive integers. Throughout this we shall denote

$$\mathcal{S}_{m,n} = \{ f : \mathbb{R}^m \rightarrow \mathbb{R}^n ; f \text{ is continuous and surjective} \}.$$

But, is $\mathcal{S}_{m,n}$ nonempty?
Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?

A CS from \mathbb{R} onto \mathbb{R}^2

Peano Curves
Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?

A CS from \mathbb{R} onto \mathbb{R}^2

Peano Curves

We use the fact that exists a Peano Curve or a Scale Filling Curve on the square I^2 (here I denotes the closed interval $[0, 1]$):
Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?

A CS from \mathbb{R} onto \mathbb{R}^2

Peano Curves

We use the fact that exists a Peano Curve or a Scale Filling Curve on the square I^2 (here I denotes the closed interval $[0, 1]$):

Theorem (G. Peano, 1890)

*There exists a continuous surjection from I to I^2.***
Peano Curves

We use the fact that exists a *Peano Curve* or a *Scale Filling Curve* on the square I^2 (here I denotes the closed interval $[0, 1]$):

Theorem (G. Peano, 1890)

*There exists a continuous surjection from I to I^2.***

Theorem (A.D. Alexandrov)

There is a continuous surjection from the Cantor space \mathcal{K} onto any arbitrary nonempty compact metric space.
A geometric construction of a space filling curve...
A continuous surjection from \(\mathbb{R} \) onto \(\mathbb{R}^2 \)

One may construct a CS \(\mathbb{R} \to \mathbb{R}^2 \) following these steps:
A continuous surjection from \mathbb{R} onto \mathbb{R}^2

One may to construct a CS $\mathbb{R} \to \mathbb{R}^2$ following these steps:

1. Write $\mathbb{R}^2 = \bigcup_{n \in \mathbb{Z}} Q_n$, where Q_n denote the closed unit squares with the inferior left corner in \mathbb{Z}^2.
A continuous surjection from \mathbb{R} onto \mathbb{R}^2

One may to construct a CS $\mathbb{R} \to \mathbb{R}^2$ following these steps:

1. Write $\mathbb{R}^2 = \bigcup_{n \in \mathbb{Z}} Q_n$, where Q_n denote the closed unit squares with the inferior left corner in \mathbb{Z}^2.

2. Built continuous surjections

$$F_n : \left[n, n + \frac{1}{2} \right] \to Q_n.$$

for each integer n. Thus, we may define continuous maps $G_n : [n + \frac{1}{2}, n + 1] \to \mathbb{R}^2$ such that starts/ends at the end/initial point of the curve F_n/F_{n+1}, respectively.
A continuous surjection from \mathbb{R} onto \mathbb{R}^2

One may to construct a CS $\mathbb{R} \to \mathbb{R}^2$ following these steps:

1. Write $\mathbb{R}^2 = \bigcup_{n \in \mathbb{Z}} Q_n$, where Q_n denote the closed unit squares with the inferior left corner in \mathbb{Z}^2.

2. Built continuous surjections

$$F_n : \left[n, n + \frac{1}{2} \right] \to Q_n.$$

for each integer n. Thus, we may define continuous maps $G_n : [n + \frac{1}{2}, n + 1] \to \mathbb{R}^2$ such that starts/ends at the end/initial point of the curve F_n/F_{n+1}, respectively.

3. Pasting the functions F_n and G_n, we obtain a CS $\mathbb{R} \to \mathbb{R}^2$.

A continuous surjection from \mathbb{R}^m onto \mathbb{R}^n

From a CS $F : \mathbb{R} \to \mathbb{R}^2$...
Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?

A CS from \mathbb{R}^m onto \mathbb{R}^n

A continuous surjection from \mathbb{R}^m onto \mathbb{R}^n

From a CS $F : \mathbb{R} \rightarrow \mathbb{R}^2$...

...we get a CS $\mathbb{R} \rightarrow \mathbb{R}^n$...
From a CS $F : \mathbb{R} \rightarrow \mathbb{R}^2$...

...we get a CS $\mathbb{R} \rightarrow \mathbb{R}^n$...

...and thus a CS $\mathbb{R}^m \rightarrow \mathbb{R}^n$.
Sumary

1 Brief overview throughout history
 ■ Unexpected objects
 ■ Lineability and surjective functions

2 Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?
 ■ A CS from \mathbb{R} onto \mathbb{R}^2
 ■ A CS from \mathbb{R}^m onto \mathbb{R}^n

3 $S_{m,n}$ lineability
 ■ A family of CS functions
 ■ Main result

4 References
A family of CS functions

Inspired on results from the R. Aron's, V.I. Gurariy's, and J.B. Seoane-Sepúlveda's paper 'Lineability and spaceability of sets of functions on \(\mathbb{R} \), Proc. Amer. Math. Soc. (2005), we define, for each positive real \(r \in \mathbb{R}^+ \), the homeomorphism \(\phi_r : \mathbb{R} \to \mathbb{R} \) by

\[
\phi_r(t) := e^{rt} - e^{-rt}.
\]

Thus, the subset \(A := \{ \phi_r \} \) of \(\mathbb{R} \) is linearly independent, has cardinality \(c \), and every nonzero element of span \((A) \) is continuous and surjective.
A family of CS functions

Inspired on results from the R. Aron’s, V.I. Gurariy’s, and J.B. Seoane-Sepúlveda’s paper *Lineability and spaceability of sets of functions on* \(\mathbb{R} \), Proc. Amer. Math. Soc. (2005), we define, for each positive real \(r \in \mathbb{R}^+ \), the homeomorphism \(\phi_r : \mathbb{R} \to \mathbb{R} \) by

\[
\phi_r(t) := e^{rt} - e^{-rt}.
\]
A family of CS functions

Inspired on results from the R. Aron’s, V.I. Gurariy’s, and J.B. Seoane-Sepúlveda’s paper *Lineability and spaceability of sets of functions on* \(\mathbb{R} \), Proc. Amer. Math. Soc. (2005), we define, for each positive real \(r \in \mathbb{R}^+ \), the homeomorphism \(\phi_r : \mathbb{R} \to \mathbb{R} \) by

\[
\phi_r(t) := e^{rt} - e^{-rt}.
\]

Thus,

Lemma

The subset \(\mathcal{A} := \{\phi_r\}_{r \in \mathbb{R}^+} \) of \(\mathbb{R}^\mathbb{R} \) is linearly independent, has cardinality \(c \), and every nonzero element of \(\text{span}(\mathcal{A}) \) is continuous and surjective.
Indeed, we may suppose $r_1 > r_2 > \ldots > r_k > 0$ and, then, write

$$
\left(\sum_{i=1}^{k} \alpha_i \cdot \phi_{r_i} \right) (t) = e^{r_1 t} \cdot \left(\alpha_1 + \sum_{i=2}^{k} \alpha_i \cdot e^{(r_i-r_1)t} \right) - \sum_{i=1}^{k} \alpha_i \cdot e^{-r_i t}
$$
Indeed, we may suppose \(r_1 > r_2 > \ldots > r_k > 0 \) and, then, write

\[
\left(\sum_{i=1}^{k} \alpha_i \cdot \phi_{r_i} \right)(t) = e^{r_1 t} \cdot \left(\alpha_1 + \sum_{i=2}^{k} \alpha_i \cdot e^{(r_i - r_1)t} \right) - \sum_{i=1}^{k} \alpha_i \cdot e^{-r_i t}
\]

Now, for each \(r = (r_1, \ldots, r_n) \in (\mathbb{R}^+)^n \), let \(\varphi_r : \mathbb{R}^n \to \mathbb{R}^n \) be the homeomorphism defined by \(\varphi_r = (\phi_{r_1}, \ldots, \phi_{r_n}) \), i.e.,

\[
\varphi_r(x) := (\phi_{r_1}(x_1), \ldots, \phi_{r_n}(x_n)),
\]

for all \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \).
Working on each coordinate, and using the previous lemma, we have the following.

Lemma

The set $\mathcal{B} = \{\varphi_r\}_{r \in (\mathbb{R}^+)^n}$ of $\mathcal{C}(\mathbb{R}^n; \mathbb{R}^n)$ is linearly independent, has cardinality \mathfrak{c}, and every nonzero element of span(\mathcal{B}) is continuous and surjective.
Main result

Theorem (1)

$S_{m,n}$ is c-lineable and, therefore, maximal lineable in $C(\mathbb{R}^m, \mathbb{R}^n)$.

Main result

Theorem (1)

$S_{m,n}$ is c-lineable and, therefore, maximal lineable in $C(\mathbb{R}^m, \mathbb{R}^n)$.

Sketch of the proof: Let’s fix $F \in S_{m,n}$.

1to appear in Bull. Belg. Math. Soc. Simon Stevin
Main result

Theorem (1)

\(S_{m,n} \) is \(\mathcal{C} \)-lineable and, therefore, maximal lineable in \(C(\mathbb{R}^m, \mathbb{R}^n) \).

Sketch of the proof: Let’s fix \(F \in S_{m,n} \).

Using the notation of the previous lemma, we will prove that

\[\mathcal{C} = \{ \Phi \circ F \}_{\Phi \in \mathcal{B}} \]

is such that \(\text{span}(\mathcal{C}) \) is the space we are looking for.

\(^1\text{to appear in Bull. Belg. Math. Soc. Simon Stevin}\)
Main result

Theorem (1)

$S_{m,n}$ is c-lineable and, therefore, maximal lineable in $C(\mathbb{R}^m, \mathbb{R}^n)$.

Sketch of the proof: Let’s fix $F \in S_{m,n}$.

Using the notation of the previous lemma, we will prove that

$$\mathcal{C} = \{\Phi \circ F\}_{\Phi \in \mathcal{B}}$$

is such that span(\mathcal{C}) is the space we are looking for.

The surjectivity of F assures that $G \circ F = 0$ implies $G = 0$, for every function $G : \mathbb{R}^n \to \mathbb{R}^n$.

So, Thus, if $\Phi_i \in \mathcal{V}$, $i = 1, \ldots, k$ and

$$0 = \sum_{i=1}^{k} \alpha_i \cdot \Phi_i \circ F = \left(\sum_{i=1}^{k} \alpha_i \Phi_i \right) \circ F,$$

then $\alpha_i = 0$, $i = 1, \ldots, k$ and, thus, \mathcal{C} is linearly independent.
So, Thus, if $\Phi_i \in \mathcal{B}$, $i = 1, \ldots, k$ and

$$0 = \sum_{i=1}^{k} \alpha_i \cdot \Phi_i \circ F = \left(\sum_{i=1}^{k} \alpha_i \Phi_i \right) \circ F,$$

then $\alpha_i = 0$, $i = 1, \ldots, k$ and, thus, \mathcal{C} is linearly independent.

Furthermore, any nonzero function

$$\sum_{i=1}^{l} \lambda_i \cdot \Psi_i \circ F = \left(\sum_{i=1}^{l} \lambda_i \Psi_i \right) \circ F$$

of $\text{span}(\mathcal{C})$ is continuous and surjective.
Maximal lineability of the set of continuous surjections

\(S_{m,n} \) lineability

Main result

...and this in higher dimension?
...and this in higher dimension?

Let’s denote the space of all real sequences by

\[\mathbb{R}^N = \mathbb{R} \times \mathbb{R} \times \cdots \]

and equip it with the product topology.
...and this in higher dimension?

Let’s denote the space of all real sequences by

\[\mathbb{R}^\mathbb{N} = \mathbb{R} \times \mathbb{R} \times \cdots \]

and equip it with the product topology.

And about \(S_{n,\mathbb{N}} \) lineability?
...and this in higher dimension?

Let’s denote the space of all real sequences by

\[\mathbb{R}^N = \mathbb{R} \times \mathbb{R} \times \cdots \]

and equip it with the product topology.

And about \(S_{n,N} \) lineability?

There is nothing to be done, since

“there is no CS map \(\mathbb{R} \rightarrow \mathbb{R}^N \)”

implies \(S_{n,N} = \emptyset \).
Summary

1. Brief overview throughout history
 - Unexpected objects
 - Lineability and surjective functions

2. Does there exist a continuous surjection from \mathbb{R}^m onto \mathbb{R}^n?
 - A CS from \mathbb{R} onto \mathbb{R}^2
 - A CS from \mathbb{R}^m onto \mathbb{R}^n

3. $S_{m,n}$ lineability
 - A family of CS functions
 - Main result

4. References
References

References

Thank you very much for your attention!