Simultaneous Reconstruction of Coefficients and Source Parameters in Elliptic Systems Modelled with Many Boundary Values Problems

Nilson C. Roberty
Nuclear Engineering Program
Federal University of Rio de Janeiro-Brazil
Symposium in Real Analysis XXXVII-2013
The practical expression of linear elliptic partial differential equations found in most of the engineering application is represented by the following system, in which the fields may be a vector and coefficients can be represented by matrices and vectors according: To find $u(x)$ such that

$$\begin{cases}
\nabla.(-c\nabla u - \alpha u + \gamma) + \beta.\nabla u + au = f & \text{if } x \in \Omega; \\
hu = g & \text{if } x \in \partial\Omega_D; \\
\nu.(c\nabla u + \alpha u - \gamma) + qu = g_{\nu} - h^*\mu & \text{if } x \in \partial\Omega_N;
\end{cases} \quad (1)$$

where ν is the outward unit normal vector on $\partial\Omega := \partial\Omega_D \cup \Pi \cup \partial\Omega_N$.

Engineering Problem
- Calderon 1980 conductivity Problem
- Uniqueness problem for coefficients
- Nonuniqueness problem for source
- Determining Coefficients and Source Parameters

Introduction
- Mathematical preliminaries
- Fundamental solution
- Boundary Integral and Reciprocity Gap Equations
- Integral Equations Based Methodologies for Direct Problem solution
- Inverse problem for parameter determination
- Lipschitz Dissection of Cauchy Data
- A Methodology based on Discrepancy Functional
- A Numerical Experiment: 5 Cauchy data.
- Numerical results for source reconstruction: 1 Cauchy datum.
Given the Dirichlet to Neumann map
\[\Lambda_c : H^{\frac{1}{2}}(\partial \Omega) \to H^{-\frac{1}{2}}(\partial \Omega) \]

To find \(u \in H^1(\partial \Omega), \ c(x) \in L^\infty(\Omega) \) such that
\[
\begin{align*}
\nabla.(-c \nabla u) &= 0 \quad \text{in } \Omega; \\
g_{\nu} &= \Lambda_c[g] \quad \text{on } \partial \Omega;
\end{align*}
\]

\[Q_c = \int_{\Omega} c(x) \|\nabla u(x)\|^2 dx = \int_{\partial \Omega} \bar{g}(x) \Lambda_c[g](x) d\sigma(x) \]

In 1980, (Seminar on Numerical Analysis and its Applications to Continuum Physics, SBM, Rio de Janeiro), Calderón posed the following problem:

Decide whether \(c \) is uniquely determined by \(Q_c \), and, if so, calculate \(c \) in terms of \(Q_c \).
Wexler, Fly and Neumann in 1985-Algorithm and systems;
The identifiability question has since been settled in the affirmative, at least when the boundary is C^∞, for piecewise analytic y by R. Kohn and M. Vogelius 1985 and 1986;
and for $c \in C^\infty$ and $C^{1,1}$ in different works by J. Sylvester and G. Uhlmann in 1986 and 1987;
for Lipschitz c by Boaz Habermann and Daniel Tataru in 2012.
non affirmative for anisotropic conductivities by Allan Greenleaf, Matti Lassas, and Gunther Uhlmann in 2003.
the uniqueness problem, for conductivity or any other coefficients, is an open problem that has been only partially solved.
"Intrinsic non uniqueness in the inverse source problem";

The Calderon Projector Gap is the same for all Cauchy datum used to estimate it.

Some uniqueness class

- The regular affine class "If the sources are restricted to the affine class of functions $C(D; F) = \{f \in H^2(\Omega) : Df = F\}$ then we have uniqueness of the associated inverse source problem (Alves, Martins, Roberty, Colaço, Olander, 2007);

- The characteristic class $f = F \chi_\omega$ (P. Novikov, 1938, Isakov, 1990);

- The mono and dipolar source class $\mathcal{A} = \{f := \sum_{j=1}^{m^1} \lambda_j \delta_{x_j} + \sum_{j=1}^{m^1} p_j \cdot \nabla \delta_{x_j} \text{(El Badia e Ha Duong, 2000)}\).
Characterizes materials parameters and source is a central question in the engineering project;

it involves experimental and theoretical questions;

it is important adequate existing engineering and multiphysics software to handle uncertainties in these parameters;

be used as a tool for process experimental data;

but respecting the actual engineering project project status of art.

Applications when we have incomplete information about these coefficient and sources

Metamaterials, Organic Tissues, etc.
This work is addressed to investigate the class of problems in which we want determine unknown parameters in the functions that characterize these coefficients and sources.

To compensate this incomplete information that ill-posed the problem, we suppose that both, Neumann and Dirichlet data, are prescribed for many boundary value problems.

These problems are formulated for the same physical coefficients and source which depend on the same set of unknown parameters.
\[\mathcal{L}u = -\sum_{j=1}^{d} (\sum_{k=1}^{d} \partial_j (A_{jk} \partial_k) u + A_j \partial_j u) + Au \]
\[(A_{jk}, A_j, A) : \Omega \rightarrow \mathbb{R}^{m \times m}. \]
\[u \text{ is a column vector with } m \text{ scalar fields and } \mathcal{L}u : \Omega \rightarrow \mathbb{R}^{m} \]
\[\text{strongly elliptic system.} \]

\[\mathcal{L}_0 u = -\sum_{j=1}^{d} \partial_j B_j u \text{ where } B_j = \sum_{k=1}^{d} A_{jk} \partial_k \] (3)

\[\Omega \text{ is a Lipschitz domain and } \gamma \text{ is the trace operator} \]
\[\text{the conormal derivative is} \]

\[B_{\nu} u = \sum_{j=1}^{d} \nu_j \gamma[B_j u] \] (4)
Let $\Omega \subset \mathbb{R}^d$ be an open set with boundary

\[\Gamma = \partial \Omega = \overline{\Omega} \cap \mathbb{R}^d \setminus \Omega. \]

Γ is locally as the graph of a Lipschitz function, that is, a Holder continuous $C^{0,1}$ function.

A domain Ω is a Lipschitz hypograph when there is a Lipschitz function $\xi : \mathbb{R}^{d-1} \to \mathbb{R}$ such that

\[\Omega = \{ x = (x', x_d) \in \mathbb{R}^d : x_d < \xi(x') \text{ and } x' = (x_1, \ldots, x_{d-1}) \in \mathbb{R}^{d-1} \} \]

Consider a disjoint union (dissection) $\Gamma = \Gamma_I \cup \Pi \cup \Gamma_{II}$

Γ_I and Γ_{II} are relatively open subsets of Γ

$\Pi = \Gamma_I \cap \Gamma_{II}$.
if there is a Lipschitz function \(\rho : \mathbb{R}^{d-2} \to \mathbb{R} \) such that

\[
(\Gamma_I, \Pi, \Gamma_{II}) = \{ x = (x'', x_{d-1}, x_d) \in \Gamma : x_{d-1}(<, =, >) \rho(x'') \}
\]

Definition

The open set \(\Omega \) is a Lipschitz domain when its boundary \(\Gamma \) is compact and there exist finite open families \(\{W_j\} \) and \(\{\Omega_j\} \) in \(\mathbb{R}^d \) such that:

(i) \(\Gamma \subseteq \bigcup_j W_j \);

(ii) Each \(\Omega_j \) can be transformed to a Lipschitz hypograph by a rigid motion;

(iii) For each \(j \), \(W_j \cap \Omega = W_j \cap \Omega_j \).
Definition

Consider Ω a Lipschitz domain. We say that $\Gamma = \Gamma_I \cup \Pi \cup \Gamma_{II}$ is a Lipschitz domain dissection of Γ if, there is Lipschitz dissections $\partial \Omega_j = \Gamma_{ij} \cup \Pi_j \cup \Gamma_{IIj}$ such that:

$$W_j \cap \Gamma_I = W_j \cap \Gamma_{ij}$$
$$W_j \cap \Pi = W_j \cap \Pi_j$$
$$W_j \cap \Gamma_{II} = W_j \cap \Gamma_{IIj}$$

for all j. Note that the subsets Γ_I and Γ_{II} need not be connected.
Let $(.)^*$ denotes the conjugate transpose of a matrix or a vector.

When the leading coefficients A_{jk} are Lipschitz functions and the lower order are $L^\infty(\Omega)^{m \times m}$ functions,

the operator $\mathcal{L} : H^2(\Omega)^m \to L^2(\Omega)^m$ is a bounded linear operator.

The formal adjoint :

$\mathcal{L}^* u = - \sum_{j=1}^{d} \sum_{k=1}^{d} \partial_j (A^*_k \partial_k u) - \sum_{j=1}^{d} \partial_j (A^*_j) u + A^* u$

$\tilde{B}_\nu u = \sum_{k=1}^{d} \nu_j \gamma [\tilde{B}_j u]$ where $\tilde{B}_j u = \sum_{k=1}^{d} A^*_{kj} \partial_k u + A^* u$, dual of the conormal derivative
sesquilinear form:

$$\Phi(u, v) = \int_{\Omega} \left(\sum_{j=1}^{d} \sum_{k=1}^{d} (A_{jk} \partial_k u)^* \partial_j v + \sum_{j=1}^{d} (A_j \partial_j u)^* v + (Au)^* v \right) dx$$

$$|\Phi(u, v)| \leq C \|u\|_{H^1(\Omega)^m} \|v\|_{H^1(\Omega)^m} \text{ bounded in } H^1(\Omega)^m$$
Lemma

Let Ω be a Lipschitz domain, u and $v \in H^1(\Omega)^m$, let the coefficients A_{jk}, A_j and A be $L^\infty(\Omega)^{m \times m}$ functions, $(.,.)_\Omega$ and $(.,.)_{\partial \Omega}$, be respectively the duality pairs in Ω and in $\partial \Omega$ and $\mathcal{L}u = f$, if:

(i) A_{jk} are Lipschitz and $u \in H^2(\Omega)^m$, then

$$\Phi(u, v) = (\mathcal{L}u, v)_\Omega + (B_v u, \gamma[v])_{\partial \Omega}; \quad (5)$$

(ii) A_{jk} and A_j are Lipschitz and $v \in H^2(\Omega)^m$, then

$$\Phi(u, v) = (u, \mathcal{L}^* v)_\Omega + (\gamma[u], \tilde{B}_v v)_{\partial \Omega}; \quad (6)$$
Lemma

(iii) $\mathcal{L}u \in L^2(\Omega)^m$, then the first Green identity (5) is verified for u and $v \in H^1(\Omega)^m$;

(iv) $\mathcal{L}^*u \in L^2(\Omega)^m$, then the first adjoint Green identity (6) is verified for u and $v \in H^1(\Omega)^m$;

(v) both $\mathcal{L}u$ and $\mathcal{L}^*u \in L^2(\Omega)^m$, then the second Green identity

$$(\mathcal{L}u, v)_\Omega - (u, \mathcal{L}^*v)_\Omega = (\gamma[u], \tilde{B}_v v)_\partial\Omega - (B_v u, \gamma[v])_\partial\Omega \quad (7)$$

is verified for u and $v \in H^1(\Omega)^m$;
Lemma

(vi) \(\mathcal{L}u = f \) in \(\Omega \) and \(f \in \tilde{H}^{-1}(\Omega)^m \), then there exist \(g \in H^{-1/2}(\Omega)^m \) such that

\[
\Phi(u, v) = (f, v)_\Omega + (g, v)_{\partial\Omega} \quad \text{for} \quad v \in H^1(\Omega)^m. \tag{8}
\]

Furthermore, \(g \) is uniquely determined by both \(u \) and \(f \), and not only by \(u \), and we have the estimate

\[
\|g\|_{H^{-1/2}(\partial\Omega)} \leq C\|u\|_{H^1(\Omega)^m} + C\|f\|_{\tilde{H}^{-1}(\partial\Omega)^m} \tag{9}
\]
Definition

Let $H_0^1(\Omega)^m = \{ u \in H^1(\Omega)^m ; \gamma[u] = 0 \}$ the closed subspace dense in $L^2(\Omega)^m$. We say that \mathcal{L} and Φ are coercive on $H_0^1(\Omega)^m$ if

$$\text{Re} \Phi(u, u) \geq c \| u \|_{H^1(\Omega)^m}^2 - C \| u \|_{H^2(\Omega)^m}^2. \quad (10)$$

Lemma

(i) \mathcal{L} is coercive if and only if its principal part \mathcal{L}_0 is coercive on $H_0^1(\Omega)^m$;

(ii) A_{jk} are bounded and uniformly continuous on Ω, then \mathcal{L} is strongly elliptic if and only if it is coercive on $H_0^1(\Omega)^m$.

Nilson C. Roberty - Symposium in Real Analysis XXXVII
Definition

We say that a differential operator \mathcal{L} is strongly elliptic on Ω if

$$
\text{Re} \sum_{j=1}^{d} \sum_{k=1}^{d} (A_{jk}(x) \xi_k \eta)^* \xi_j \eta \geq c |\xi|^2 |\eta|^2 \text{ for all } x \in \Omega, \xi \in \mathbb{R}^d \text{ and } \eta \in \mathbb{C}^m
$$

(11)
Definition

- The trace operator \(\gamma : \mathcal{D}(\Omega) \to \mathcal{D}(\partial\Omega) \) is the restriction \(\gamma[u] = u|_{\partial\Omega} \)
- Sometimes, \(u = U|_{\Omega} \) is restriction of \(U \in \mathcal{D}(\mathbb{R}^d) \)
- \(\gamma^\pm \), distinguish trace from the interior= \(\Omega \)/exterior= \(\mathbb{R}^d \setminus \Omega \).

Lemma

If \(\Omega \) is \(C^{k-1,1} \) domain, and if \(\frac{1}{2} < s \leq k \), then \(\gamma \) has a unique extension to a bounded linear operator with continuous right inverse

\[
\gamma : H^s(\Omega) \to H^{s-\frac{1}{2}}(\Omega) \tag{12}
\]
Let Ω a domain with Lipschitz dissection boundary $\partial \Omega = \partial \Omega_N \cup \Pi \cup \partial \Omega_N$. The mixed boundary value problem for the physical model given by (1) is given by the well posed problem

$$P_{f,g_D,g_N} : \text{To find } u \in H^1(\Omega)^m \text{ such that}$$

$$P_{f,g_D,g_N} \quad \begin{cases}
 \mathcal{L}u = f & \text{if } x \in \Omega; \\
 \gamma[u] = g_D & \text{if } x \in \partial \Omega_D; \\
 B_\nu u = g_N & \text{if } x \in \partial \Omega_N;
\end{cases} \tag{13}$$

we can show that (13) has the following weak formulation W_{f,g_D,g_N}

$$W_{f,g_D,g_N} \quad \begin{cases}
 (\mathcal{L}u, v)_\Omega + (B_\nu u, \gamma[v])_{\partial \Omega} = \Phi(u, v) = \\
 = (f, v)_\Omega + (g_N, \gamma[v])_{\partial \Omega_N} & \text{if } v \in H^1_D(\Omega)^m; \\
 \gamma[u] = g_D & \text{if } x \in \partial \Omega_D;
\end{cases}$$

Nilson C. Roberty - Symposium in Real Analysis XXXVII
Definition

A Fundamental solution to the operator \mathcal{L} is a distributional solution of the equation:

$$\mathcal{L}^* u_\xi = \delta_\xi$$ \hspace{1cm} (15)

where δ_ξ is the delta Dirac operator defined as $\delta_\xi[\phi] = \phi(\xi)$, for $\xi \in \Omega$ and $\phi \in (C^\infty_{\text{compact}}(\Omega))^m = (\mathcal{D}(\Omega))^m$.

A regular regular solution and the other with pole ξ

$$u_\xi(x) = v(x) + G_\xi(x) , \ x \in \overline{\Omega} ,$$ \hspace{1cm} (16)
Regular:

\[v(x) \in H_{L^*}(\Omega) = \{v \text{ such that } L^* v = 0\} \]

- Particular with singular source \(\delta_\xi \) at \(x = \xi \): \(G_\xi(x) \)
- The second Green identity in can be restated in a distributional framework with
 \[L^* G_\xi = \delta_\xi \in \mathcal{E}^* (\mathbb{R}^d)^m := ((C^\infty(\Omega))^*)^m \]
- and gives for \(Lu \in \mathcal{E}^m = (C^\infty(\Omega))^m \)

\[(Lu, G_\xi)_\Omega - (u, L^* G_\xi)_\Omega = (Lu, G_\xi)_\Omega - u(\xi) = 0. \quad (17) \]
\(\mathcal{L} = -\text{div}(\mathbf{A} \text{grad} u) + 2\langle \mathbf{b} \cdot \text{grad} u \rangle + cu; \)

- \(\mathbf{A} \in \mathbb{R}^{d \times d} \) symmetric and positive defined; \(\mathbf{b} \in \mathbb{C}^d \) and \(c \in \mathbb{C}; \)

- \(\langle x, y \rangle_{\mathbf{A}} := x^T \mathbf{A}^{-1} y; \| x \|_{\mathbf{A}} := \langle x, x \rangle_{\mathbf{A}}^{\frac{1}{2}} \)

- \(\vartheta := c + \| \|_{\mathbf{A}}^2; \text{ for } \vartheta \geq 0; \lambda = \sqrt{\vartheta}; \text{ otherwise } \lambda = -i \sqrt{|\vartheta|}; \)
The fundamental solution $G(x - y)$ is given by:

- for $d = 2$ and $\lambda = 0$
 \[
 G(z) = \frac{\exp\langle b, z\rangle_A}{2\pi \sqrt{\det A}} \log \frac{1}{\|z\|_A}
 \]

- for $d = 2$ and $\lambda \neq 0$
 \[
 G(z) = \frac{\exp\langle b, z\rangle_A}{4\sqrt{\det A}} iH_0^1(i\lambda\|z\|_A)
 \]

- for $d = 3$
 \[
 G(z) = \frac{1}{4\pi \sqrt{\det A}} \frac{\exp\langle b, z\rangle_A - \lambda\|z\|_A}{\|z\|_A}
 \]
Navier operator

\[\Delta^* \mathbf{u} := \text{div}(\lambda(\text{div} \mathbf{u}) \mathbf{l} + 2\mu \frac{1}{2}(\text{grad} \mathbf{u} + \text{grad} \mathbf{u}^T)) ; \]

\[\mathcal{L} \mathbf{u} = (\Delta^* + \omega); \mathbf{u} = \mu \Delta \mathbf{u} + (\lambda + \mu) \text{graddiv} \mathbf{u} + \omega \mathbf{u}; \]

for \(d = 2 \) and \(\omega = 0; \)

\[G_{ij}^0(\|\mathbf{z}\|) := -\frac{\lambda + 3\mu}{4\pi \mu(\lambda + 2\mu)} \log(\|\mathbf{z}\|) \mathbf{l} + \frac{\lambda + \mu}{4\pi \mu(\lambda + 2\mu)} \frac{\mathbf{z} \otimes \mathbf{z}}{\|\mathbf{z}\|^2} \]

for \(d = 2 \) and \(\omega \neq 0; \)

\[G_{ij}^\omega(\|\mathbf{z}\|) := \frac{i}{4\mu} H_0^{(1)}(\omega \sqrt{\mu} \|\mathbf{z}\|) \delta_{ij} \]

\[+ \frac{1}{\omega^2} \frac{\partial^2(i \sqrt{4H_0^{(1)}(\omega \sqrt{\mu} \|\mathbf{z}\|) - i \sqrt{\lambda + 2\mu} \|\mathbf{z}\|})}{\partial x_i \partial x_j} \]
As a trivial consequence of the definition of adjoint of operator \mathcal{L}, the operator

$$
\mathcal{G} u(\xi) = \int_{\Omega} G(\xi, x) u(x) \, dx \text{ for } \xi \in \mathbb{R}^d
$$

(18)

is a smoothing integral operator with kernel $G(\xi, x) = G_\xi(x)$. It is the two sides inverse for operator \mathcal{L}, that is,

$$
\mathcal{L} \mathcal{G} u = \mathcal{G} \mathcal{L} u = u \text{ for } u \in \mathcal{E}^*(\mathbb{R}^d)^m.
$$

(19)

The operator \mathcal{G} is also known as the volume potential associated with \mathcal{L}.
\[\Omega = \Omega^- \subset \mathbb{R}^d \] has a complementary and unbounded domain
\[\Omega^+ = \mathbb{R} \setminus \Omega. \]

Extended Lagrange-Green identity in all \(\mathbb{R}^d \) as
\[
\Phi^\pm (u, v) = \int_{\Omega^\pm} \left(\sum_{j=1}^{d} \sum_{k=1}^{d} (A_{jk} \partial_k u)^* \partial_j v + \sum_{j=1}^{d} (A_j \partial_j u)^* v + (Au)^* v \right) dx.
\] (20)

\[\gamma^\pm [u] = (U^\pm)|_\gamma \] for some \(U^\pm \in \mathcal{D}(\mathbb{R}^d) \), \(u \) viewed as restriction from some \(U \in \mathcal{D}(\mathbb{R}^d) \) that may jumps in the traces

\[B_v^\pm [u] = \sum_{j=1}^{d} v_j \gamma^\pm [\sum_{k=1}^{d} A_{jk} \partial_k u] \]
\[\tilde{B}_v^\pm [u] = \sum_{j=1}^{d} v_j \gamma^\pm [\sum_{k=1}^{d} A^*_k \partial_k u + A^*_j u]. \]
Introduction
Mathematical preliminaries
Fundamental solution
Boundary Integral and Reciprocity Gap Equations
Integral Equations Based Methodologies for Direct Problem solution
Inverse problem for parameter determination
Lipschitz Dissection of Cauchy Data
A Methodology based on Discrepancy Functional
A Numerical Experiment: 5 Cauchy data.
Numerical results for source reconstruction: 1 Cauchy datum.

Definition

Third Green Identity includes possible jumps resulting from transmission of discontinuities in the surface Γ as distributions sources for discontinuities

$$Lu = f + \tilde{B}_\nu^*[u]_\Gamma - \gamma^*[B_\nu u]_\Gamma \text{ on } \mathbb{R}^d. \quad (21)$$
Definition

The single layer and the double layer potential

\[SL = \mathcal{G}\gamma^* \] and \[DL = \mathcal{G}\tilde{\mathcal{B}}_\nu^* \]

\[SL[\mathcal{B}_\nu[\psi]][\xi] = \int_G G_\xi(x)\mathcal{B}_\nu[\psi](x)d\sigma_x = \]
\[\int_G G_\xi(x) \sum_{j=1}^{d}\nu_j \sum_{k=1}^{d} A_{jk} \partial_k \psi(x)d\sigma_x , \xi \in \Omega \]

\[DL[\psi](\xi) = \int_G (\tilde{\mathcal{B}}_\nu^*[G_\xi(x)])^*\psi(x)d\sigma_x = \]
\[\int_G (\sum_{j=1}^{d} \nu_j \sum_{k=1}^{d} A_{jk} \partial_k G_\xi(x) + A_j G_\xi(x))\psi(x)d\sigma_x , \xi \in \Omega \]
\[G_\xi(x) \in (C^\infty(\mathbb{R}^d) \setminus \{0\})^m, \text{ locally bounded operators} \]

Lemma

Let \(\chi \in C^\infty_{\text{compact}}(\mathbb{R}^d) \). Then

(i) \((\chi SL, \gamma SL, B_\nu^\pm SL) : H^{-\frac{1}{2}}(\Gamma)^m \times H^{-\frac{1}{2}}(\Gamma)^m \times H^{-\frac{1}{2}}(\Gamma)^m \rightarrow H^1(\mathbb{R}^d) \times H^\frac{1}{2}(\Gamma)^m \times H^{-\frac{1}{2}}(\Gamma)^m ; \)

(ii) \((\chi DL, \gamma^\pm DL, B_\nu DL) : H^\frac{1}{2}(\Gamma)^m \times H^\frac{1}{2}(\Gamma)^m \times H^\frac{1}{2}(\Gamma)^m \rightarrow H^1(\Omega^\pm) \times H^\frac{1}{2}(\Gamma)^m \times H^{-\frac{1}{2}}(\Gamma)^m \)

(iii) If \(\psi \in H^{-\frac{1}{2}}(\Gamma)^m \), then \([SL\psi]_\Gamma = 0 \text{ and } B_\nu SL\psi]_\Gamma = -\psi; \)

(iv) If \(\psi \in H^\frac{1}{2}(\Gamma)^m \), then \([DL\psi]_\Gamma = \psi \text{ and } B_\nu DL\psi]_\Gamma = 0; \)
Definition

When \(u = u^+ + u^- \in L^2(\mathbb{R}^d)^m \), with \(u^\pm \in H^1(\Omega^\pm)^m \), has compact support in \(\mathbb{R}^d \) and \(f = f^+ + f^- \in H^{-1}(\mathbb{R}^d)^m \), we can enunciate the **Third Green Identity**

\[
 u = Gf + DL[u]_{\Gamma} - SL[\mathcal{B}_{\nu}u]_{\Gamma} \text{ on } \mathbb{R}^d.
\] (22)
Singular solution in Third Green with \(u^+ = 0 \)

\[
\gamma^{-}_\xi u(\xi) = \gamma^{-}_\xi \int_\Omega G_\xi(x) f dx + \gamma^{-}_\xi SL[B_\nu[u]](\xi) - \gamma^{-}_\xi DL[u](\xi)
\]

- **explicit integral representation, \(\xi \in \Gamma \)**

\[
u(\xi) = \int_\Omega G_\xi(x) f dx + \int_\Gamma G_\xi(x) \sum_{j=1}^d \nu_j \sum_{k=1}^d A_{jk} \partial_k u(x) d\sigma_x
\]

\[- \int_\Gamma (\sum_{j=1}^d \nu_j \sum_{k=1}^d A_{jk} \partial_k G_\xi(x) + A_j G_\xi(x)) u(x) d\sigma_x ,
\]
Regular solution in Third Green with $u^+ = 0$

$$\int_{\Omega} v(x)f(x)dx = -\int_{\Gamma} ((\tilde{B}_\nu x [v(x)])^* u(x)d\sigma_x + \int_{\Gamma} v(x)B_{\nu x}[u(x)]d\sigma_x,$$

Variational: for all $v \in (H_{\mathcal{L}^*}(\Omega)^m)^*$.

Explicitly

$$\int_{\Omega} v(x)f(x)dx = -\int_{\Gamma} \left(\sum_{j=1}^{d} \nu_j \sum_{k=1}^{d} A_{jk} \partial_k v(x) + A_j v(x) \right) u(x)d\sigma_x$$

$$+ \int_{\Gamma} v(x) \sum_{j=1}^{d} \nu_j \sum_{k=1}^{d} A_{jk} \partial_k u(x)d\sigma_x$$
Mixed boundary value problem (13), P_{f,g^D,g^N}: To find $u \in H^1(\Omega)^m$ such that

$$P_{f,g^D,g^N} \left\{ \begin{array}{ll}
\mathcal{L}u = f & \text{if } x \in \Omega; \\
\gamma[u] = g^D & \text{if } x \in \Gamma_D; \\
\mathcal{B}_\nu u = g^N & \text{if } x \in \Gamma_N.
\end{array} \right.$$
The Green’s Function Methodology: some particular regular solution of the fundamental solution that depends on the domain boundary \(\Gamma \) need to be chosen in order to null the unknown part of the Cauchy data in that boundary.

- extension by zero outside \(\Omega \);
- By perturbing the singular solution, \(G_\xi \), of with some regular solution \(\nu(x) \) solution of the auxiliary problem

\[
P_0, -G_\xi^*(x)|_{\Gamma_D}, -\tilde{B}_\nu [G_\xi^*](x)|_{\Gamma_N} \left\{ \begin{array}{ll}
\mathcal{L}^* \nu = 0 & \text{if } x \in \Omega; \\
\gamma^- [\nu] = -G_\xi^*(x)|_{\Gamma_N} & \text{if } x \in \Gamma_N; \\
\tilde{B}_\nu \nu = -\tilde{B}_\nu [G_\xi^*](x)|_{\Gamma_D} & \text{if } x \in \Gamma_D,
\end{array} \right.
\]
Introduction
Mathematical preliminaries
Fundamental solution
Boundary Integral and Reciprocity Gap Equations
Integral Equations Based Methodologies for Direct Problem solution
Inverse problem for parameter determination
Lipschitz Dissection of Cauchy Data
A Methodology based on Discrepancy Functional
A Numerical Experiment: 5 Cauchy data.
Numerical results for source reconstruction: 1 Cauchy datum.

Green's function Methodology
index = 0 Fredholm Boundary Operators
Boundary Integral Methodology
The Calderon Projector
The Calderon Projector Gap
Complementary Problems on Lipschitz Domains
Theorem on Complementary Solutions
Proof:

\[
G_{\xi}^v(x) = G_{\xi}(x) + v(x)
\]

\[
SL_v[u](\xi) = \int_{\Gamma_D} G_{\xi}^v(x)u(x) \, dx
\]

\[
DL_v[u](\xi) = \int_{\Gamma_D} (\tilde{B}[G_{\xi}^{v*}(x)])^* u(x) \, dx
\]

\[
u(\xi) = \int_{\Omega} G_{\xi}^v(x) f \, dx - DL_v[g^D](\xi) + SL_v[g^N_vu](\xi), \xi \in \Omega.
\]
The compositions involving traces of the layers potentials can be expressed in terms of the Fredholm integrals index zero operators

(i) \(S_{x\rightarrow \xi} = \gamma_{\xi} SL_{x\rightarrow \xi} = \int_{\Gamma} \gamma_{\xi} (\tilde{B}_{\nu_{\xi}} G_{\xi}^{*})^{*} [.] d\sigma_{x} : H^{-\frac{1}{2}} (\Gamma) \rightarrow H^{\frac{1}{2}} (\Gamma) \);

(ii) \(\tilde{T}_{x\rightarrow \xi}^{*} = -I_{x\rightarrow \xi} + 2B_{\nu_{\xi}} SL_{x\rightarrow \xi} = \int_{\Gamma} B_{\nu_{\xi}} (\tilde{B}_{\nu_{\xi}} G_{\xi}^{*})^{*} [.] d\sigma_{x} : H^{\frac{1}{2}} (\Gamma) \rightarrow H^{-\frac{1}{2}} (\Gamma) \);

(iii) \(T_{x\rightarrow \xi} = I_{x\rightarrow \xi} + 2\gamma_{\xi} DL_{x\rightarrow \xi} = \int_{\Gamma} \gamma_{\xi} G_{\xi}(x)[.]d\sigma_{x} : H^{\frac{1}{2}} (\Gamma) \rightarrow H^{\frac{1}{2}} (\Gamma) \);

(iv) \(-R_{x\rightarrow \xi} = B_{\nu_{\xi}} DL_{x\rightarrow \xi} = \int_{\Gamma} B_{\nu_{\xi}} (\tilde{B}_{\nu_{\xi}} G_{\xi}^{*})^{*} [.] d\sigma_{x} : H^{\frac{1}{2}} (\Gamma) \rightarrow H^{-\frac{1}{2}} (\Gamma) \).
Boundary integral equation methodology for the mixed boundary value problem, \(P_{f,g^D,g^N} \)

consider extension by zero outside \(\Omega \) and use the system made with the Lipschitz dissection of the third Green’s identity at the boundary

\(P_{f,g^D,g^N} \) has Partial Cauchy data:

we known \(\gamma u|_{\Gamma_D} = g^D \) and \(B_\nu u|_{\Gamma_N} = g^N_\nu \),

but don’t know \(\gamma u|_{\Gamma_N} = g^N \) and \(B_\nu u|_{\Gamma_D} = g^D_\nu \).
Introduction
Mathematical preliminaries
Fundamental solution

Boundary Integral and Reciprocity Gap Equations
Integral Equations Based Methodologies for Direct Problem solution
Inverse problem for parameter determination
Lipschitz Dissection of Cauchy Data
A Methodology based on Discrepancy Functional
A Numerical Experiment: 5 Cauchy data.
Numerical results for source reconstruction: 1 Cauchy datum.

Green's function Methodology
index = 0 Fredholm Boundary Operators

Boundary Integral Methodology
The Calderon Projector
The Calderon Projector Gap
Complementary Problems on Lipschitz Domains
Theorem on Complementary Solutions
Proof:

\[
\begin{bmatrix}
S_{DD}^{\xi \rightarrow x} & -\frac{1}{2} T_{ND}^{\xi \rightarrow x} \\
\frac{1}{2} \tilde{T}^{** \xi \rightarrow x} & R_{NN}^{\xi \rightarrow x}
\end{bmatrix}
\begin{bmatrix}
g_D \\
g_N
\end{bmatrix}
= - \begin{bmatrix}
\int_{\Omega} \gamma_{\xi} G_{\xi} |\Gamma_D(x)f(x)| dx \\
\int_{\Omega} B_{\nu_{\xi}} G_{\xi} |\Gamma_D(x)f(x)| dx
\end{bmatrix}
+ \begin{bmatrix}
-S_{ND}^{\xi \rightarrow x} & \frac{1}{2} (I_{DD}^{\xi \rightarrow x} + T_{DD}^{\xi \rightarrow x}) \\
\frac{1}{2} (I_{NN}^{\xi \rightarrow x} + \tilde{T}^{** NN}) & -R_{NN}^{\xi \rightarrow x}
\end{bmatrix}
\begin{bmatrix}
g_D \\
g_N
\end{bmatrix}.
\]

System to be solved for the unknown Cauchy Data. Fredholm theory applies.
Definition

The Calderón operator is the 2×2 linear operator

$$C : (H^{1/2}(\Omega))^m \times (H^{-1/2}(\Omega))^m \to (H^{1/2}(\Omega))^m \times (H^{-1/2}(\Omega))^m$$
defined by

$$C[\gamma u, B_\nu]^T = \begin{bmatrix}
-\gamma DL[\gamma u] & \gamma SL[B_\nu u] \\
-B_\nu DL[\gamma u] & B_\nu SL[B_\nu u]
\end{bmatrix}$$

- The Calderon operator is a projector:
 $$C[g, g_\nu] = [g, g_\nu]^T = C^2[g, g_\nu]^T$$
- index zero Fredholm representation:

$$C = \begin{bmatrix}
\frac{1}{2}(I - T) & S \\
R & \frac{1}{2}(I + \tilde{T}^*)
\end{bmatrix}$$
Definition

When the mixed boundary value problem is posed with a non null source, P_{f,g^D,g^N}, we have a gap in the Calderón projector:

$$\begin{bmatrix}
 \gamma u(\xi) \\
 \mathcal{B}_\nu u(\xi)
\end{bmatrix} = \begin{bmatrix}
 \int_{\Omega} \gamma_{\xi}[G_{\xi}](y)f(y)dy \\
 \int_{\Omega} \mathcal{B}_{\nu\xi}[G_{\xi}](y)f(y)dy
\end{bmatrix} + \begin{bmatrix}
 \frac{1}{2}(I_{x\to\xi} - T_{x\to\xi}) \\
 \frac{1}{2}(I_{x\to\xi} + T_{x\to\xi})
\end{bmatrix} \begin{bmatrix}
 \gamma u(\xi) \\
 \mathcal{B}_\nu u(\xi)
\end{bmatrix}, \ (x, \xi) \in \Gamma \times \Gamma$$
Matrix equation for Lipschitz Boundary Dissection:

\[
\begin{bmatrix}
\gamma u(\xi)|_{\Gamma_D} \\
\gamma u(\xi)|_{\Gamma_N} \\
B_\nu u(\xi)|_{\Gamma_D} \\
B_\nu u(\xi)|_{\Gamma_N}
\end{bmatrix} = \begin{bmatrix}
\int_\Omega \gamma \xi G_\xi G_\xi \Gamma_D(y)f(y)dy \\
\int_\Omega \gamma \xi G_\xi iG_\xi \Gamma_N(y)f(y)dy \\
\int_\Omega B_\nu \xi G_\xi \Gamma_N(y)f(y)dy \\
\int_\Omega B_\nu \xi G_\xi \Gamma_D(y)f(y)dy
\end{bmatrix} + \begin{bmatrix}
\frac{1}{2} \left(I^{DD}_{x\rightarrow\xi} - T^{DD}_{x\rightarrow\xi} \right) \\
\frac{1}{2} \left(I^{NN}_{x\rightarrow\xi} - T^{NN}_{\xi N\times N} \right) \\
\frac{1}{2} \left(I^{DD}_{x\rightarrow\xi}\tilde{T}^{*DD}_{x\rightarrow\xi} \right) \\
\frac{1}{2} \left(I^{NN}_{x\rightarrow\xi}\tilde{T}^{*NN}_{x\rightarrow\xi} \right)
\end{bmatrix}
\]
Lemma

For a given association of a Lipschitz domain with a source distribution, the Calderón projector gap is as a restriction which the Cauchy data must satisfy in order to be a consistent data with boundary value problems.
Definition

Let us consider two mixed boundary value problems $P_{f_I,g_I,g'_{I\nu}}$ and $P_{f_{II},g_{II},g'_{II\nu}}$ defined on the same Lipschitz domain Ω. We say that these problems are complementary if $f_I = f_{II}$, $\Gamma_D^I = \Gamma_D^{II}$, $\Gamma_N^I = \Gamma_N^{II}$ and there exist a Cauchy data (g, g_{ν}) such that

$$g_I^I = g \chi_{\Gamma_D^I} \quad \text{and} \quad g_{II}^I = g \chi_{\Gamma_D^{II}}.$$

$$g_{I\nu}^I = g_{\nu} \chi_{\Gamma_D^I} \quad \text{and} \quad g_{II\nu}^I = g_{\nu} \chi_{\Gamma_D^{II}}.$$
Theorem

Suppose that two mixed boundary value problems $P_{f_I,g_I,g_{I\nu}}$ and $P_{f_{II},g_{II},g_{II\nu}}$ has solutions u_I and u_{II}, respectively. If they are complementary, then

$$u_I = u_{II}.$$

Proof:

\[g(x) = g_I^I(x)\chi_{\Gamma^I_D}(x) + g_{II}^I(x)\chi_{\Gamma^I_N}(x) = g_I^I(x)\chi_{\Gamma_{II}^I}(x) + g_{II}^I(x)\chi_{\Gamma_{II}^I}(x) \]
and

\[g_{\nu}(x) = g_{I\nu}^I(x)\chi_{\Gamma^I_D}(x) + g_{II\nu}^I(x)\chi_{\Gamma^I_N}(x) = g_{I\nu}^I(x)\chi_{\Gamma_{II}^I}(x) + g_{II\nu}^I(x)\chi_{\Gamma_{II}^I}(x). \]
Denoting $f = f_I = f_{II}$, the solution will be, via boundary integral equation method,

$$u(x) = \int_{\Omega} G_{\xi}(x)f(x)dx - DL[g](x) + SL[g_{\nu}](x).$$

By taking the trace and the conormal trace, we see that it satisfies the Calderón gap projection dissection equation. So, Cauchy data obtained by the extension formulates a unique problem with integral representation.
Materials properties and sources can depend on some unknowns parameters related with the support of inclusions inside Ω where the coefficient has some different functional description, or even with the functional description itself.

We consider these parameters collected in a parameter vector $\alpha = [\alpha_1, \alpha_2, ..., \alpha_{NA}]^T$ and that the coefficients and source are represented as

$$ \{ A_{jk} := [a_{pq}^{jk}(\alpha, x)] , A_j := a_{pq}^j(\alpha, x) , A := [a(\alpha, x)] , f(\alpha, x) \}, $$

which for $p, q = 1, ..., m$ are functions from $\Omega \times [\beta_1, \beta_2]$ into $\mathbb{R}^{m \times m}$.
\[\alpha \in [\beta_1, \beta_2] \in \mathbb{R}^{NA}. \]

- the strongly elliptic operator model with parameter dependence are formally written as:

\[L_\alpha u = f_\alpha, \ x \in \Omega \text{ and } \alpha \in [\alpha_1, \alpha_2]. \]

- The indeterminacy of \(\alpha \) is compensate with the over prescription of boundary conditions: For \(p = 1, \ldots, NP \),

\[\gamma u(p) = g(p) \text{ and } B(v) u(p) = g_v(p). \]
Steklov-Poincaré operator, which is an extended definition of the Dirichlet to Neumann map for this kind of system, at some points in the trace space

\[(\gamma u^{(p)}, B_{\nu} u^{(p)}) = (g^{(p)}, g_{\nu}^{(p)}).\]

This set of \((NP)\) Cauchy data fully prescribed at the boundary can be used to formulated a non unique set with \(2(NP)\) well posed direct problems by using some Lipschitz of the Boundary \(\Gamma\).
Choose some Lipschitz dissection of Γ associated with problem (p) and given by

$$\Gamma = \Gamma^{(p)}_I \cup \Pi^{(p)} \cup \Gamma^{(p)}_II,$$

$\Gamma^{(p)}_I$ and $\Gamma^{(p)}_II$ are disjoint, eventually-empty or non connected, relatively open subsets of Γ, having $\Pi^{(p)}$ as their common boundary.

Consider also the restriction for Cauchy data for problem (p) associated with this partition:

$$\left\{ \begin{array}{l}
(g^{I(p)}, g^{I(p)}_\nu) = (\gamma u^{(p)}|_{\Gamma_I}, \beta u^{(p)}|_{\Gamma_I}) = (g^{(p)}|_{\Gamma_I}, g^{(p)}_\nu|_{\Gamma_I}) \\
(g^{II(p)}, g^{II(p)}_\nu) = (\gamma u^{(p)}|_{\Gamma_{II}}, \beta u^{(p)}|_{\Gamma_{II}}) = (g^{(p)}|_{\Gamma_{II}}, g^{(p)}_\nu|_{\Gamma_{II}}).
\end{array} \right.$$
For each one of these Cauchy data of the Lipschitz dissection, we can formulate two complementaries well posed sets of mixed boundary values problems, respectively,

\[
P_{f_\alpha, g_{\nu}^{(p)}, g_{\nu}^{(p)}}^\alpha \quad \text{and} \quad P_{f_\alpha, g_{\nu}^{(p)}, g_{\nu}^{(p)}}^\alpha
\]

Given a guess set of parameter \(\alpha \), for problems \(p = 1, \ldots, NP \), to find complementary solutions \(u_{\nu}^{(p)} \) and \(u_{\nu}^{(p)} \) such that

\[
\begin{align*}
\left\{ u_{\nu}^{(p)} \right\} & \quad \text{solution of} \quad P_{f_\alpha, g_{\nu}^{(p)}, g_{\nu}^{(p)}}^\alpha \\
\left\{ u_{\nu}^{(p)} \right\} & \quad \text{solution of} \quad P_{f_\alpha, g_{\nu}^{(p)}, g_{\nu}^{(p)}}^\alpha.
\end{align*}
\]
the partition done with the Lipschitz dissection is arbitrary
it can also be different for different problems in the many boundary values problems set
if necessary, we can do two or more dissection for the same problem.
The correctness of this procedure will depends on the information about the parameters that it produces.
One basic rule of thumb is that partitions must be chosen in a way to avoid the guess direct problems to be non well posed.
Lemma

Suppose that in the model given by operator \mathcal{L}_α and source f_α, characterized by the parameter set α, the associated Cauchy boundary data are given by

$$\gamma u^{(p)} = g^{(p)} \quad \text{and} \quad B_\nu u^{(p)} = g_\nu^{(p)}, \quad \text{for} \ p = 1, \ldots, NP.$$

If for some p and for some Lipschitz dissection we have $u_1^{(p)}$ and $u_II^{(p)}$ solutions of problem $P^\alpha_{f_\alpha, g_1^{(p)}, g_\nu^{(p)}}$ and $P^\alpha_{f_\alpha, g_{II}^{(p)}, g_\nu^{(p)}}$, then

$$u_1^{(p)} = u_II^{(p)}.$$
\[\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_\alpha. \]

- \(\mathcal{L}_0 \) does not depend on \(\alpha \) and has a known fundamental solution.
- \(\mathcal{L}_\alpha \) can be treated as a source that eventually depends nonlinearly on the parameter \(\alpha \), but is always linear on \(u, \partial u \) and \(\partial^2 u \).
- null in the neighbourhood of the boundary \(\Gamma \) since \(\mathcal{L} = \mathcal{L}_0 \).

\[
\mathcal{L}_0 u = f(\alpha, u) := f_0(\alpha) + \mathcal{L}_\alpha =
= f_0(\alpha) + \sum_{i=1}^{d} \sum_{k=1}^{d} \partial_i(A_{ik}(\alpha)\partial_k u) + \sum_{i=1}^{d} A_i(\alpha)\partial_i u + A(\alpha)u
\]
Let $u^{(p)}$ be solutions correspondent to Cauchy data $(g^{(p)}, g^{(p)}_{\nu})$, for $p = 1, 2, \ldots, nP$.

Let us introduce the following column matrix for these Cauchy data set at boundary Γ and its respective solutions inside the domain Ω:

$$U(x) = [u^{(1)}(x), \ldots, u^{(nP)}(x)], \ x \in \Omega;$$

$$H(\xi) = \gamma_{\xi}^{-} U = [g^{(1)}(\xi), \ldots, g^{(nP)}(\xi)], \ \xi \in \Gamma;$$

$$H_{\nu}(\xi) = B_{\nu} U = [g^{(1)}_{\nu}(\xi), \ldots, g^{(nP)}_{\nu}(\xi)], \ \xi \in \Gamma.$$
Calderón Gap Matrix Equation

\[H(\xi) = \gamma_\xi^{-} \int_{\Omega} G_\xi(x) f(x, \alpha, U) dx + \gamma_\xi^{-} SL[H_\nu](\xi) - \gamma_\xi^{-} DL[H](\xi), \ \xi \in \Gamma, \]

\[H_\nu(\xi) = B_\nu^{-} \int_{\Omega} G_\xi(x) f(x, \alpha, U) dx + B_\nu^{-} SL[H_\nu](\xi) - B_\nu^{-} DL[H](\xi), \ \xi \in \Gamma, \]

\[\begin{bmatrix} H(\xi) \\ H_\nu(\xi) \end{bmatrix} = \begin{bmatrix} \int_{\Omega} \gamma_\xi[G_\xi](y) f(y, \alpha, U) dy \\ \int_{\Omega} B_\nu[G_\xi](y) f(y, \alpha, U) dy \end{bmatrix} + \begin{bmatrix} \frac{1}{2} (I_{x \to \xi} - T_{x \to \xi}) & \frac{1}{2} (I_{x \to \xi} + \tilde{T}_{x \to \xi}^*) \\ R_{x \to \xi} & \frac{1}{2} (I_{x \to \xi} + \tilde{T}_{x \to \xi}) \end{bmatrix} \begin{bmatrix} H(\xi) \\ H_\nu(\xi) \end{bmatrix}, \ (x, \xi) \in \Gamma \times \Gamma. \]
Reciprocity Gap Matrix Equations

\[\int_{\Omega} \nu(x)f(x, \alpha, U)dx = -\int_{\Gamma} ((\tilde{B}_\nu x [\nu(x)])^* H(x))d\sigma_x + \int_{\Gamma} \nu(x)H_\nu (x)d\sigma_x, \]

for all \(\nu \in (H_{L_0^*})^m = \{ \nu \in H^2(\Omega)^m : L_0^*(\nu) = 0 \}. \]
Consider the splitting Cauchy boundary data with some Lipschitz boundary dissection

\[H^I(\xi) = \gamma^I_{\xi} U|_{\Gamma_I} = [g^{(1)}(\xi), \ldots, g^{(NP)}(\xi)] , \xi \in \Gamma_I; \]

\[H''^I(\xi) = \gamma^I_{\xi} U|_{\Gamma''_I} = [g^{(1)}(\xi), \ldots, g^{(NP)}(\xi)] , \xi \in \Gamma''_I; \]

\[H^I_{\nu}(\xi) = \mathcal{B}_{\nu} U|_{\Gamma_I} = [g^{(1)}_{\nu}(\xi), \ldots, g^{(NP)}_{\nu}(\xi)] , \xi \in \Gamma_I; \]

\[H''^I_{\nu}(\xi) = \mathcal{B}_{\nu} U|_{\Gamma''_I} = [g^{(1)}_{\nu}(\xi), \ldots, g^{(NP)}_{\nu}(\xi)] , \xi \in \Gamma''_I. \]

These equations supplement the 2NP complementary direct problems based on the Lipschitz dissection that has been established.
\[L_0 U_I = f(x, \alpha, U) \in \Omega \text{ resp, } L_0 U_{II} = f(x, \alpha, U) \in \Omega. \]

Here \(U_I \) and \(U_{II} \) are solutions of the following mixed boundary values problems \(P_f(x, \alpha, U), H^I, H^I_\nu \) and \(P_f(x, \alpha, U), H^{II}, H^{II}_\nu \), respectively.

The Green's function solutions

\[
U_I(\xi) = \int_{\Omega} G^I_{\xi}(x)f(x, \alpha, U)dx - DL^I_{v^I}[H^I](\xi) + SL^I_{v^I}[H^I_\nu](\xi), \xi \in \Omega
\]

\[
U_{II}(\xi) = \int_{\Omega} G^{II}_{\xi}(x)f(x, \alpha, U)dx - DL^{II}_{v^II}[U^{II}](\xi) + SL^{II}_{v^II}[U^{II}_\nu](\xi), \xi \in \Omega
\]
The idea now is explore the fact that these two set of solutions indexed by I and II must be, under ideal conditions, equal for each problem \((p)\), as has been stated in Theorem of Complementary solutions and Lemma on Solution with consistent Cauchy data.

and create some discrepancy function that measures observed differences for guess value of the parameters.

Norms in the solution space for the direct problems can be adopted as measures

\[
d(\alpha, U_I, U_{II}) = \sum_{p=1}^{NP} \|u_I^{(p)}(\alpha, .) - u_{II}^{(p)}(\alpha, .)\|_V,
\]

where
Optimization problem: In the guess set of parameters $\alpha \in \{[\alpha_1, \alpha_2] \subset \mathbb{R}^{NA}\}$, to find $\bar{\alpha}$ that minimizes the discrepancy between Lipschitz dissected solutions.

- Use of solvers based on finite elements method, ... etc.
- Of course, the boundary integral methodology or the Green’s function methodologies can also be used, but this is not the more conventional procedure.
- From computational point of view, minimization of the discrepancy functional can be easily implemented if the algorithm does not require the computations of gradients of the solution with respect to the parameters.
- Nelder-Mead Simplex method in low dimensions.
The discrepancy functional is a non-linear function of α.

The minimization problem can be solved with different optimization algorithms, but the cost of determining derivatives with respect to parameters defining the source makes the utilization of gradient based algorithms very difficult to implement.

Algorithms based only on functional evaluation, such as the case of the Nelder-Mead method works simple.

This algorithm attempt only to minimizes the scalar-value non linear discrepancy function of characteristic sources parameters that can be obtained from truncated Fourier series solutions of problems (I) and (II).
The Nelder-Mead simplex algorithm is based on four operations:

1. Reflection with algorithm parameter $\rho > 0$;
2. Expansion with algorithm parameter $\chi > 1$;
3. Contraction with algorithm parameter $0 < \gamma < 1$;
4. Shrink with algorithm parameter $0 < \sigma < 1$.

Steps [1]-[3] are used to create a new simplex by attempting to replace the vertex with the highest functional values with a smaller. If this attempt is unsuccessful, then the current simplex is reduced in size using step [4], and the entire procedure is repeated. We adopted here the universal typical algorithm parameters values: $\rho = 1$, $\chi = 2$, $\gamma = \frac{1}{2}$ and $\sigma = \frac{1}{2}$.
The numerical experiment that illustrate this work is a model in which the square $(-1, +1) \times (-1, +1)$ has in its interior a small rectangle with unknown center, unknown edges a and b, which supports unknown parameters related with the conductivity, c, the potential, a, and the source intensity, f.

Cauchy data are synthetically generated with a problem in which parameters value are known equal to 1 in the exterior of the small rectangle, and all equal 2 in the interior. Also the unknown information about the rectangle used are center at the origin and side $a = b = .2$.
The parameters in operator L are:

$$m = 1;$$

$$A_{jk} = 1 + (c - 1)\chi(x_0 - \frac{1}{2}x_1, x_0 + \frac{1}{2}x_1)\chi(y_0 - \frac{1}{2}y_1, y_0 + \frac{1}{2}y_1)\delta_{jk};$$

$$A_j = 0;$$

$$A = 1 + (a - 1)\chi(x_0 - \frac{1}{2}x_1, x_0 + \frac{1}{2}x_1)\chi(y_0 - \frac{1}{2}y_1, y_0 + \frac{1}{2}y_1)\delta_{jk};$$

$$f(x) = 1 + (f - 1)\chi(x_0 - \frac{1}{2}x_1, x_0 + \frac{1}{2}x_1)\chi(y_0 - \frac{1}{2}y_1, y_0 + \frac{1}{2}y_1)\delta_{jk};$$

and the set of parameters are $\alpha = (x_0, y_0, x_1, y_1, c, a, f) \in \mathbb{R}^7$.

Nilson C. Roberty - Symposium in Real Analysis XXXVII
Parameters reconstruction
\[\Gamma = \Gamma_{y=-1} \cup \Pi(-1,+1) \cup \Gamma_{x=+1} \cup \Pi(+1,+1) \cup \Gamma_{y=+1} \cup \Pi(-1,+1) \cup \Gamma_{x=-1} \cup \Pi(-1,0) \]

and is counterclockwise oriented.

- Cauchy data are synthetically produced by solving a set of 5 Dirichlet direct problems
- with parameters \(\alpha = (0, 0, 1, 1, 2, 2, 2) \in \mathbb{R}^7 \) with quadratic Lagrange finite elements method.
(0) $g|_{\Gamma_{y=-1}} = 0$; $g|_{\Gamma_{x=+1}} = 0$; $g|_{\Gamma_{y=+1}} = 0$; $g|_{\Gamma_{x=-1}} = 0$
(1) $g|_{\Gamma_{y=-1}} = (1-x)(1+x)$; $g|_{\Gamma_{x=+1}} = 0$; $g|_{\Gamma_{y=+1}} = 0$; $g|_{\Gamma_{x=-1}} = 0$
(2) $g|_{\Gamma_{y=-1}} = 0$; $g|_{\Gamma_{x=+1}} = (1-y)(1+y)$; $g|_{\Gamma_{y=+1}} = 0$; $g|_{\Gamma_{x=-1}} = 0$
(3) $g|_{\Gamma_{y=-1}} = 0$; $g|_{\Gamma_{x=+1}} = 0$; $g|_{\Gamma_{y=+1}} = (1-x)(1+x)$; $g|_{\Gamma_{x=-1}} = 0$
(4) $g|_{\Gamma_{y=-1}} = 0$; $g|_{\Gamma_{x=+1}} = 0$; $g|_{\Gamma_{y=+1}} = 0$; $g|_{\Gamma_{x=-1}} = (1-y)(1+y)$.

generating Neumann data
{$g^{(p)}_\nu|_{\Gamma_{y=-1}}$; $g^{(p)}_\nu|_{\Gamma_{x=+1}}$; $g^{(p)}_\nu|_{\Gamma_{y=+1}}$; $g^{(p)}_\nu|_{\Gamma_{x=-1}}$; $p = 0, 1, 2, 3, 4$}.
Introduction
Mathematical preliminaries
Fundamental solution
Boundary Integral and Reciprocity Gap Equations
Integral Equations Based Methodologies for Direct Problem solution
Inverse problem for parameter determination
Lipschitz Dissection of Cauchy Data
A Methodology based on Discrepancy Functional

A Numerical Experiment: 5 Cauchy data.
Numerical results for source reconstruction: 1 Cauchy datum.

Lipschitz Dissection
Five Problems Solved
Synthesized Cauchy data (0)
Synthesized Cauchy data (1,2,3,4)
Convergence results 1
Convergence results 2
Conclusions 1
Conclusions 2

Nilson C. Roberty - Symposium in Real Analysis XXXVII
Parameters reconstruction
They has been interpolated with piecewise cubic splines and used in the inverse algorithm. The Boundary of the square has been dissected in two non connected parts composed by

\[\Gamma_I = \Gamma_{y=-1} \cup \Gamma_{y=+1} \quad \text{and} \quad \Gamma_{II} = \Gamma_{x=-1} \cup \Gamma_{x=+1}. \]
Ten problems formulated with the dissection of these Cauchy data can now be used to evaluate

the discrepancy functional based on the following sup norm:

\[d(\alpha, U_I, U_{II}) = \max_{p=1}^{NP} (\sup_{x \in \Omega} |u^{(p)}_I(\alpha, x) - u^{(p)}_{II}(\alpha, x)|). \]

The search starts with random generated initial data in the intervals \([0, 2]^7\) for the 7 unknown parameters
Introduction
Mathematical preliminaries
Fundamental solution
Boundary Integral and Reciprocity Gap Equations
Integral Equations Based Methodologies for Direct Problem solution
Inverse problem for parameter determination
Lipschitz Dissection of Cauchy Data
A Methodology based on Discrepancy Functional
A Numerical Experiment: 5 Cauchy data.
Numerical results for source reconstruction: 1 Cauchy datum.

Lipschitz Dissection
Five Problems Solved
Synthesized Cauchy data (0)
Synthesized Cauchy data (1,2,3,4)
Convergence results 1
Convergence results 2
Conclusions 1
Conclusions 2

Figure: Iterative simultaneous reconstruction of rectangle shape, conductivity, absorption and source
Figure: Iterative simultaneous reconstruction of rectangle shape, conductivity, absorption and source.

Five Problems Solved
Synthesized Cauchy data (0)
Synthesized Cauchy data (1, 2, 3, 4)
Convergence results 1
Convergence results 2
We proposed a methodology for reconstruction of unknown parameters associated with coefficients and source in strongly elliptic system.

To make it clear, we also introduce the most important mathematical concepts involved in the solution of the strongly elliptic problem with integral equations at the boundary of a Lipschitz domain.

In the inverse problem, the existence of the unknown parameters is compensate with the prescription of many Cauchy data related experimentally with the same set of parameters.
We demonstrate that a discrepancy functional depending on the the parameters must be minimized in order to be consistent with the given Cauchy data.

The main ideas used to develop this formulation are Lipschitz Dissection and Calderón Projector Gap.

In this first work, the optimization methodology is numerically investigate with non differentiable Nelder-Mead search algorithm.

Numerical results are presented to illustrate the ideas. Further research involving differentiability and the use of differentiable algorithms are currently been investigated.
square \((-1, +1) \times (-1, +1)\) has in its interior sources with intensity equal 1

and supported on two circles with unknown center and radius \((x_{c1}, y_{c1}, R_{c1})\) and \((x_{c2}, y_{c2}, R_{c2})\), respectively.

Laplace. Even for this very simple problem there is no mathematical proof of uniqueness of reconstruction from boundary data.

finite elements method can avoid Green’s function.

Nelder-Mead Simplex Method with random generated initial data
The Finite elements solution used for produce Cauchy data
Table: Two Circles Inside a square reconstructed as it is.

<table>
<thead>
<tr>
<th></th>
<th>x_{c1}</th>
<th>y_{c1}</th>
<th>R_{c1}</th>
<th>x_{c2}</th>
<th>y_{c2}</th>
<th>R_{c2}</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>-.5</td>
<td>0</td>
<td>.2</td>
<td>0.5</td>
<td>0</td>
<td>.2</td>
<td>.253</td>
</tr>
<tr>
<td>initial</td>
<td>-.4</td>
<td>0</td>
<td>.3</td>
<td>.4</td>
<td>0</td>
<td>.3</td>
<td>—</td>
</tr>
<tr>
<td>final</td>
<td>-.5127</td>
<td>-.0006</td>
<td>.1982</td>
<td>.5384</td>
<td>-.0000</td>
<td>.2103</td>
<td>.2644</td>
</tr>
</tbody>
</table>
Reconstructed values after 140 iter info existence two sources

![Graphical solution](image)

Current Point

- Current point
- Number of variables: 6
- Current Function Value: 0.000231507
Introduction

Mathematical preliminaries

Fundamental solution

Boundary Integral and Reciprocity Gap Equations

Integral Equations Based Methodologies for Direct Problem solution

Inverse problem for parameter determination

Lipschitz Dissection of Cauchy Data

A Methodology based on Discrepancy Functional

A Numerical Experiment: 5 Cauchy data.

Numerical results for source reconstruction: 1 Cauchy datum.

Table: Two circle inside a square reconstructed as one circle inside a square.

<table>
<thead>
<tr>
<th></th>
<th>x_c</th>
<th>y_c</th>
<th>R_c</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>.00005</td>
<td>.0005</td>
<td>.3</td>
<td>.2513</td>
</tr>
<tr>
<td>final</td>
<td>0.0001</td>
<td>.0005</td>
<td>.2840</td>
<td>.2534</td>
</tr>
<tr>
<td>initial</td>
<td>.5</td>
<td>.5</td>
<td>.3</td>
<td>.2513</td>
</tr>
<tr>
<td>final</td>
<td>-.2847</td>
<td>.0065</td>
<td>.2517</td>
<td>.1991</td>
</tr>
<tr>
<td>initial</td>
<td>-.1</td>
<td>.1</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>final</td>
<td>-.2774</td>
<td>-.0019</td>
<td>.2517</td>
<td>.1991</td>
</tr>
<tr>
<td>initial</td>
<td>-.05</td>
<td>.05</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>final</td>
<td>-.3109</td>
<td>.00500</td>
<td>.2457</td>
<td>.1897</td>
</tr>
</tbody>
</table>

Experiment two circles inside square

Graphical solution

Table with numbers

Convergence

Two circle reconstructed as one

Results for an two dimensional analytical model

Analytical solution

The case of sources with non connected support

Conclusions and future works

Acknowledgments

References 1

References 2

References 3
Two squares inside a square

The Fourier series has been truncated with 100 and the number of collocations points is 40.

Table: Characteristic source dimensions

<table>
<thead>
<tr>
<th>Type of source</th>
<th>a_1</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact source</td>
<td>-0.5000</td>
<td>+0.5000</td>
<td>-0.5000</td>
<td>+0.5000</td>
</tr>
<tr>
<td>Random source</td>
<td>-0.4074</td>
<td>+0.0635</td>
<td>-0.4529</td>
<td>+0.4576</td>
</tr>
<tr>
<td>Reconstructed 80 iter</td>
<td>-0.4975</td>
<td>+0.0962</td>
<td>-0.7446</td>
<td>+0.9357</td>
</tr>
</tbody>
</table>
The solution of the Dirichlet problem and its Neumann data. The discrepancy functional with exact source parameters, is $4.2047e - 006$. Convergence is quite satisfactory when the Discrepancy become close to this value for 286 iterations.

Figure: Homogeneous Dirichlet model solution with boundary data.
Introduction
Mathematical preliminaries
Fundamental solution
Boundary Integral and Reciprocity Gap Equations
Integral Equations Based Methodologies for Direct Problem solution
Inverse problem for parameter determination
Lipschitz Dissection of Cauchy Data
A Methodology based on Discrepancy Functional
A Numerical Experiment: 5 Cauchy data.
Numerical results for source reconstruction: 1 Cauchy datum.

Analytical solution
The case of sources with non connected support
Conclusions and future works
Acknowledgments
References 1
References 2
References 3

Figure: Exact and Random generate source support.
Introduction

Mathematical preliminaries
Fundamental solution

Boundary Integral and Reciprocity Gap Equations
Integral Equations Based Methodologies for Direct Problem solution
Inverse problem for parameter determination
Lipschitz Dissection of Cauchy Data

A Methodology based on Discrepancy Functional
A Numerical Experiment: 5 Cauchy data.

Numerical results for source reconstruction: 1 Cauchy datum.

Figure: Reconstructed source for 80 and 286 iterations.

Analytical solution
The case of sources with non connected support
Conclusions and future works
Acknowledgments
References 1
References 2
References 3
Introduction
Mathematical preliminaries
Fundamental solution
Boundary Integral and Reciprocity Gap Equations
Integral Equations Based Methodologies for Direct Problem solution
Inverse problem for parameter determination
Lipschitz Dissection of Cauchy Data
A Methodology based on Discrepancy Functional
A Numerical Experiment: 5 Cauchy data.
Numerical results for source reconstruction: 1 Cauchy datum.

Figure: Exact and Random generate source biconnected support.
Figure: Reconstructed biconnected source for 82 and 675 iterations.
The non injective behaviour of the inverse problem of source reconstruction by using only boundary data is given by the non one to one behaviour of the normal trace induced by the elliptic operator L on the domain boundary;

In the moment, the uniqueness can be proved for some special class, such as, the regular affine, the characteristic and the distributional monopole or dipole sources;

One experiment shown that at least for one kind of source with non connected support the reconstruction can be done successfully;

If the support are not supposed has at least two connected components, the reconstruction fails;
This work is supported by Brazilian Agencies

- CNPq,
- Capes and
- Coopetec Foundation.

Experiment two circles inside square
Graphical solution
Table with numbers
Convergence
Two circle reconstructed as one
Results for an two dimensional analytical model
Analytical solution
The case of sources with non connected support
Conclusions and future works
Acknowledgments
References 1
References 2
References 3

