On some generalization of the classical concept of bounded variation with applications

Piotr Kasprzak

Faculty of Mathematics and Computer Science Adam Mickiewicz University, Poznań, Poland

> Sugarcane Symposium June 3, 2013

Let $f: [0,1] \to \mathbb{R}$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a non-decreasing sequence of positive real numbers such that $\sum_{i=1}^{\infty} 1/\lambda_i = +\infty$.

Let $f: [0,1] \to \mathbb{R}$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a non-decreasing sequence of positive real numbers such that $\sum_{i=1}^{\infty} 1/\lambda_i = +\infty$. The number

$$\operatorname{var}_{\Lambda} f = \sup \sum_{i=1}^{n} \frac{1}{\lambda_{i}} |f(b_{i}) - f(a_{i})|,$$

where the supremum is taken over all finite collections I_1, \ldots, I_n of compact non-overlapping subintervals of [0,1] of the form $I_i:=[a_i, b_i]$, is called the A-variation of the function f.

Let $f: [0,1] \to \mathbb{R}$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a non-decreasing sequence of positive real numbers such that $\sum_{i=1}^{\infty} 1/\lambda_i = +\infty$. The number

$$\operatorname{var}_{\Lambda} f = \sup \sum_{i=1}^{n} \frac{1}{\lambda_{i}} |f(b_{i}) - f(a_{i})|,$$

where the supremum is taken over all finite collections I_1, \ldots, I_n of compact non-overlapping subintervals of [0,1] of the form $I_i:=[a_i, b_i]$, is called the Λ -variation of the function f.

For $\lambda_n = 1$, where $n \in \mathbb{N}$, we get the variation in the sense of Jordan.

Let $f: [0,1] \to \mathbb{R}$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a non-decreasing sequence of positive real numbers such that $\sum_{i=1}^{\infty} 1/\lambda_i = +\infty$. The number

$$\operatorname{var}_{\Lambda} f = \sup \sum_{i=1}^{n} \frac{1}{\lambda_{i}} |f(b_{i}) - f(a_{i})|,$$

where the supremum is taken over all finite collections I_1, \ldots, I_n of compact non-overlapping subintervals of [0,1] of the form $I_i:=[a_i, b_i]$, is called the Λ -variation of the function f.

For $\lambda_n = 1$, where $n \in \mathbb{N}$, we get the variation in the sense of Jordan.

For $\lambda_n = n$, where $n \in \mathbb{N}$, we get the harmonic variation.

• Applications to integral equations.

- Applications to integral equations.
- Applications to Fourier series.

Theorem (Waterman, 1972)

Let $f: [0, 2\pi] \to \mathbb{R}$ be a function of harmonic bounded variation. Then its Fourier series converges to $\frac{1}{2}[f(t+0) + f(t-0)]$ at every $t \in [0, 2\pi]$, and moreover, converges uniformly to f on each interval of the continuity of the function.

- Applications to integral equations.
- Applications to Fourier series.

Theorem (Waterman, 1972)

Let $f: [0, 2\pi] \to \mathbb{R}$ be a function of harmonic bounded variation. Then its Fourier series converges to $\frac{1}{2}[f(t+0) + f(t-0)]$ at every $t \in [0, 2\pi]$, and moreover, converges uniformly to f on each interval of the continuity of the function.

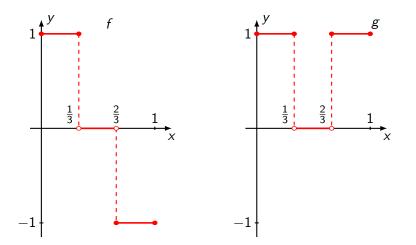
• Simplification of reasonings.

Let $f: [0,1] \to \mathbb{R}$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a non-decreasing sequence of positive real numbers such that $\sum_{i=1}^{\infty} 1/\lambda_i = +\infty$. The number

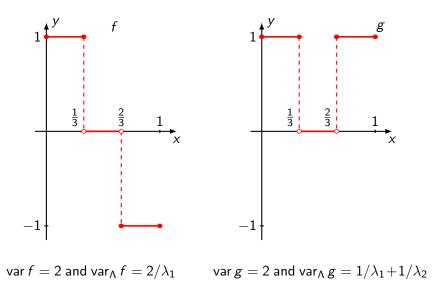
$$\operatorname{var}_{\Lambda} f = \sup \sum_{i=1}^{n} \frac{1}{\lambda_{i}} |f(b_{i}) - f(a_{i})|,$$

where the supremum is taken over all finite collections I_1, \ldots, I_n of compact non-overlapping subintervals of [0,1] of the form $I_i:=[a_i, b_i]$, is called the Λ -variation of the function f.

Example 1



Example 1



• If f is a BV-function, then f is also a ΛBV -function. Moreover,

$$\operatorname{var}_{\Lambda} f \leq \frac{1}{\lambda_1} \operatorname{var} f.$$

- If f is a BV-function, then f is also a ΛBV -function.
- If f is a ΛBV -function for every Λ -sequence $(\lambda_n)_{n \in \mathbb{N}}$ such that $\lambda_n \to +\infty$ as $n \to +\infty$, then f is a BV-function.

- If f is a BV-function, then f is also a ΛBV -function.
- If f is a ΛBV -function for every Λ -sequence $(\lambda_n)_{n \in \mathbb{N}}$ such that $\lambda_n \to +\infty$ as $n \to +\infty$, then f is a BV-function.
- If f is a monotone function, then $\operatorname{var}_{\Lambda} f = \frac{1}{\lambda_1} |f(1) f(0)|$.

- If f is a BV-function, then f is also a ΛBV -function.
- If f is a ΛBV -function for every Λ -sequence $(\lambda_n)_{n \in \mathbb{N}}$ such that $\lambda_n \to +\infty$ as $n \to +\infty$, then f is a BV-function.
- If f is a monotone function, then $\operatorname{var}_{\Lambda} f = \frac{1}{\lambda_1} |f(1) f(0)|$.
- If f is a ΛBV -function, then f is bounded. Moreover,

$$\sup_{t\in[0,1]}|f(t)|\leq |f(0)|+\lambda_1\operatorname{var}_\Lambda f.$$

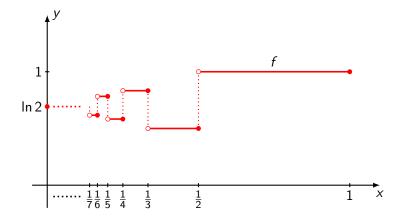
- If f is a BV-function, then f is also a ΛBV -function.
- If f is a ΛBV -function for every Λ -sequence $(\lambda_n)_{n \in \mathbb{N}}$ such that $\lambda_n \to +\infty$ as $n \to +\infty$, then f is a BV-function.
- If f is a monotone function, then $\operatorname{var}_{\Lambda} f = \frac{1}{\lambda_1} |f(1) f(0)|$.
- If f is a ΛBV -function, then f is bounded.
- If f is a ΛBV-function, then f has a finite right- and left-hand side limit at every point of [0, 1].

- If f is a BV-function, then f is also a ΛBV -function.
- If f is a ΛBV -function for every Λ -sequence $(\lambda_n)_{n \in \mathbb{N}}$ such that $\lambda_n \to +\infty$ as $n \to +\infty$, then f is a BV-function.

• If f is a monotone function, then $\operatorname{var}_{\Lambda} f = \frac{1}{\lambda_1} |f(1) - f(0)|$.

- If f is a ΛBV -function, then f is bounded.
- If f is a ΛBV-function, then f has a finite right- and left-hand side limit at every point of [0, 1].
- If f has a finite right- and left-hand side limits at every point of [0, 1], then f is a ΛBV-function for some Λ-sequence (λ_n)_{n∈N}.





f is not a BV-function, but f is a HBV-function

$$\Lambda BV[0,1] := \{f : [0,1] \to \mathbb{R} : \operatorname{var}_{\Lambda} f < +\infty\},\$$

endowed with the norm $||f||_{\Lambda} := |f(0)| + \operatorname{var}_{\Lambda} f$ is a Banach space.

$$\Lambda BV[0,1] := \{f : [0,1] \to \mathbb{R} : \operatorname{var}_{\Lambda} f < +\infty\},\$$

endowed with the norm $||f||_{\Lambda} := |f(0)| + \operatorname{var}_{\Lambda} f$ is a Banach space.

• $\Lambda BV[0,1]$ is a Banach algebra in the norm $|f| := ||f||_{\infty} + \operatorname{var}_{\Lambda} f$, since

$$\operatorname{var}_{\Lambda}(fg) \leq \|g\|_{\infty} \cdot \operatorname{var}_{\Lambda} f + \|f\|_{\infty} \cdot \operatorname{var}_{\Lambda} g.$$

$$\Lambda BV[0,1] := \{f : [0,1] \to \mathbb{R} : \operatorname{var}_{\Lambda} f < +\infty\},\$$

endowed with the norm $||f||_{\Lambda} := |f(0)| + \operatorname{var}_{\Lambda} f$ is a Banach space.

- $\Lambda BV[0,1]$ is a Banach algebra in the norm $|f| := ||f||_{\infty} + \operatorname{var}_{\Lambda} f$.
- $\Lambda BV[0,1]$ is not separable; for $\delta \in [0,1]$ consider

$$f_{\delta}(t) = egin{cases} 1, & ext{if } t = \delta, \ 0, & ext{if } t
eq \delta. \end{cases}$$

$$\Lambda BV[0,1] := \{f : [0,1] \to \mathbb{R} : \operatorname{var}_{\Lambda} f < +\infty\},\$$

endowed with the norm $||f||_{\Lambda} := |f(0)| + \operatorname{var}_{\Lambda} f$ is a Banach space.

- $\Lambda BV[0,1]$ is a Banach algebra in the norm $|f| := ||f||_{\infty} + \operatorname{var}_{\Lambda} f$.
- $\Lambda BV[0,1]$ is not separable.
- ΛBV[0,1] is not reflexive (see [Prus-Wiśniowski, Ruckle, 2012]).

ΛBV -solutions to Hammerstein integral equation

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) ds$$
 $t \in [0,1],$ (H)

where

ΛBV -solutions to Hammerstein integral equation

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) \mathrm{d}s \qquad t \in [0,1], \qquad (\mathsf{H})$$

where

- $g \in \Lambda BV[0,1];$
- $f: \mathbb{R} \to \mathbb{R}$ is a Lipschitz function;
- k: [0,1] × [0,1] → ℝ is a function such that var_Λ k(·, s) ≤ m(s) a.e. on [0,1], where m: [0,1] → [0,+∞) is L-integrable, and for every t ∈ [0,1] the function s ↦ k(t,s) is L-integrable.

ΛBV -solutions to Hammerstein integral equation

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) \mathrm{d}s \qquad t \in [0,1], \qquad (\mathsf{H})$$

where

- $g \in \Lambda BV[0,1];$
- $f: \mathbb{R} \to \mathbb{R}$ is a Lipschitz function;
- k: [0,1] × [0,1] → ℝ is a function such that var_Λ k(·, s) ≤ m(s) a.e. on [0,1], where m: [0,1] → [0,+∞) is L-integrable, and for every t ∈ [0,1] the function s ↦ k(t,s) is L-integrable.

Theorem (Bugajewska, O'Regan, 2005)

Under these assumptions there exists $\rho > 0$ such that for every α with $|\alpha| < \rho$ the equation (H) has a unique solution in $\Lambda BV[0, 1]$.

Definition

Let $f: [0,1] \to \mathbb{R}$ and fix a Λ -sequence $(\lambda_n)_{n \in \mathbb{N}}$. The number

$$\underline{\operatorname{var}}_{\Lambda}f := \inf \{ \operatorname{var}_{\Lambda}g : f = g \text{ a.e. on } [0,1] \}$$

is called the lower Λ -variation of the function f.

Definition

Let $f: [0,1] \to \mathbb{R}$ and fix a Λ -sequence $(\lambda_n)_{n \in \mathbb{N}}$. The number

$$\underline{\operatorname{var}}_{\Lambda}f := \inf \{ \operatorname{var}_{\Lambda}g : f = g \text{ a.e. on } [0,1] \}$$

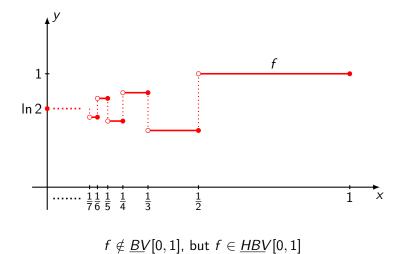
is called the lower Λ -variation of the function f.

The vector space

$$\underline{ABV}[0,1] := \left\{ f \in L^1[0,1] : \underline{\operatorname{var}}_{\mathsf{A}} f < +\infty \right\}$$

endowed with the norm $\|f\|_{\Lambda} := \|f\|_1 + \underline{\operatorname{var}}_{\Lambda} f$ is a Banach space.

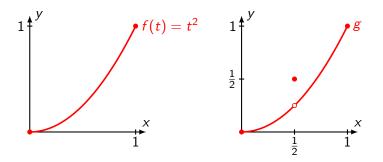
Example 2, revisited



• Each $f \in \underline{ABV}[0,1]$ has a good representative, that is, a function $\varphi: [0,1] \to \mathbb{R}$ a.e. equal to f on [0,1] such that $\operatorname{var}_{\Lambda} \varphi = \underline{\operatorname{var}}_{\Lambda} f$.

• Each $f \in \underline{ABV}[0,1]$ has a good representative, that is, a function $\varphi \colon [0,1] \to \mathbb{R}$ a.e. equal to f on [0,1] such that $\operatorname{var}_{\Lambda} \varphi = \underline{\operatorname{var}}_{\Lambda} f$.

However, a good representative may not be uniquely determined.



- Each $f \in \underline{\Lambda BV}[0,1]$ has a good representative $\varphi \colon [0,1] \to \mathbb{R}$.
- A monotone function $f: [0, 1] \to \mathbb{R}$ is a good representative of $[f] \in \underline{\Lambda BV}[0, 1]$, if and only if it is right-continuous at 0 and left-continuous at 1.

- Each $f \in \underline{\Lambda BV}[0,1]$ has a good representative $\varphi \colon [0,1] \to \mathbb{R}$.
- A monotone function $f: [0, 1] \to \mathbb{R}$ is a good representative of $[f] \in \underline{\Lambda BV}[0, 1]$, if and only if it is right-continuous at 0 and left-continuous at 1.
- If $f: [0,1] \to \mathbb{R}$ is a continuous function such that $[f] \in \underline{\Lambda BV}[0,1]$, then f is a good representative of [f].

- Each $f \in \underline{\Lambda BV}[0,1]$ has a good representative $\varphi \colon [0,1] \to \mathbb{R}$.
- A monotone function $f: [0, 1] \to \mathbb{R}$ is a good representative of $[f] \in \underline{\Lambda BV}[0, 1]$, if and only if it is right-continuous at 0 and left-continuous at 1.
- If $f: [0,1] \to \mathbb{R}$ is a continuous function such that $[f] \in \underline{\Lambda BV}[0,1]$, then f is a good representative of [f].
- If $f \in \underline{\Lambda BV}[0,1]$, then $f \in L^{\infty}[0,1]$. Moreover, there exists a constant c_{Λ} such that $\|f\|_{\infty} \leq c_{\Lambda} \|f\|_{\Lambda}$.

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) ds$$
 for a.e. $t \in [0,1]$, (\underline{H})

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) ds$$
 for a.e. $t \in [0,1]$, (\underline{H})

where

- $g \in \underline{\Lambda BV}[0,1];$
- $f: \mathbb{R} \to \mathbb{R}$ is a locally Lipschitz function;
- the kernel k is an L-integrable function with <u>var</u>∧k(·, s) ≤ m(s) a.e. on [0, 1], where m: [0, 1] → [0, +∞) is L-integrable.
- there exists a L-measurable function ϑ: [0,1] × [0,1] → ℝ such that ϑ(·, s) is a good representative of the equivalence class generated by k(·, s) for a.e. s ∈ [0,1] and for every t ∈ [0,1] the function s ↦ ϑ(t, s) is L-measurable.

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) ds$$
 for a.e. $t \in [0,1]$, (\underline{H})

Theorem

Under the above assumptions there exists $\rho > 0$ such that for every α with $|\alpha| < \rho$ the equation (<u>H</u>) has a solution in <u>ABV</u>[0, 1].

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) ds$$
 for a.e. $t \in [0,1]$, (\underline{H})

Theorem

Under the above assumptions there exists $\rho > 0$ such that for every α with $|\alpha| < \rho$ the equation (<u>H</u>) has a solution in <u>ABV</u>[0, 1].

If f is a Lipschitzian, then (\underline{H}) has a unique \underline{ABV} -solution.

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) ds$$
 for a.e. $t \in [0,1]$, (\underline{H})

Theorem

Under the above assumptions there exists $\rho > 0$ such that for every α with $|\alpha| < \rho$ the equation (<u>H</u>) has a solution in <u>ABV</u>[0, 1].

If f is a Lipschitzian, then (\underline{H}) has a unique \underline{ABV} -solution.

Its representatives are not necessarily unique ΛBV -solutions of (\underline{H}) .

Consider the nonlinear Hammerstein integral equation

$$x(t) = g(t) + \alpha \int_0^1 k(t,s) f(x(s)) ds$$
 for a.e. $t \in [0,1]$, (\underline{H})

Theorem

Under the above assumptions there exists $\rho > 0$ such that for every α with $|\alpha| < \rho$ the equation (<u>H</u>) has a solution in <u>ABV</u>[0, 1].

If f is a Lipschitzian, then (\underline{H}) has a unique \underline{ABV} -solution.

Its representatives are not necessarily unique ΛBV -solutions of (\underline{H}) .

Among all the solutions of (\underline{H}) in $\Lambda BV[0,1]$ 'the best' ones are the good representatives of the unique solution in $\underline{\Lambda BV}[0,1]$.

Thank you for your attention

- D. Bugajewska, P. Kasprzak, On bounded lower A-variation, submitted.
- D. Bugajewska, D. O'Regan, On nonlinear integral equations and A-bounded variation, Acta Math. Hungar. 107 (2005), no. 4, 295–306.
- D. Bugajewski, On BV-solutions of some nonlinear integral equations, Integral Equations Operator Theory **46** (2003), no. 4, 387–398.
- S. Perlman, *Functions of generalized variation*, Fund. Math. **105** (1979/80), no. 3, 199–211.
- D. Waterman, On convergence of Fourier series of functions of generalized bounded variation, Studia Math. 44 (1972), 107–117.
- D. Waterman On Λ-bounded variation, Studia Math. 57 (1976), 33-45.