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Λ-variation

Definition (Waterman, 1972)

Let f : [0, 1]→ R and let (λn)n∈N be a non-decreasing sequence of

positive real numbers such that
∑∞

i=1 1/λi = +∞.

The number

varΛ f = sup
n∑

i=1

1

λi
|f (bi )− f (ai )|,

where the supremum is taken over all finite collections I1, . . . , In
of compact non-overlapping subintervals of [0, 1] of the form

Ii :=[ai , bi ], is called the Λ-variation of the function f .

For λn = 1, where n ∈ N, we get the variation in the sense of Jordan.

For λn = n, where n ∈ N, we get the harmonic variation.
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Motivations

Applications to integral equations.
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Motivations

Applications to integral equations.

Applications to Fourier series.

Theorem (Waterman, 1972)

Let f : [0, 2π] → R be a function of harmonic bounded variation.

Then its Fourier series converges to 1
2 [f (t + 0) + f (t − 0)] at every

t ∈ [0, 2π], and moreover, converges uniformly to f on each interval

of the continuity of the function.
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Motivations

Applications to integral equations.

Applications to Fourier series.

Theorem (Waterman, 1972)

Let f : [0, 2π] → R be a function of harmonic bounded variation.

Then its Fourier series converges to 1
2 [f (t + 0) + f (t − 0)] at every

t ∈ [0, 2π], and moreover, converges uniformly to f on each interval

of the continuity of the function.

Simplification of reasonings.
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var f = 2 and varΛ f = 2/λ1 var g = 2 and varΛ g = 1/λ1+1/λ2
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Basic properties of ΛBV-functions

If f is a BV-function, then f is also a ΛBV-function. Moreover,

varΛ f ≤ 1

λ1
var f .
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Basic properties of ΛBV-functions

If f is a BV-function, then f is also a ΛBV-function.

If f is a ΛBV-function for every Λ-sequence (λn)n∈N such that

λn → +∞ as n→ +∞, then f is a BV-function.

If f is a monotone function, then varΛ f =
1

λ1
|f (1)− f (0)|.

If f is a ΛBV-function, then f is bounded. Moreover,

sup
t∈[0,1]

|f (t)| ≤ |f (0)|+ λ1 varΛ f .
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If f is a BV-function, then f is also a ΛBV-function.

If f is a ΛBV-function for every Λ-sequence (λn)n∈N such that

λn → +∞ as n→ +∞, then f is a BV-function.

If f is a monotone function, then varΛ f =
1

λ1
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If f is a ΛBV-function, then f is bounded.

If f is a ΛBV-function, then f has a finite right- and left-hand side

limit at every point of [0, 1].

Piotr Kasprzak On generalized bounded variation



Basic properties of ΛBV-functions

If f is a BV-function, then f is also a ΛBV-function.

If f is a ΛBV-function for every Λ-sequence (λn)n∈N such that

λn → +∞ as n→ +∞, then f is a BV-function.

If f is a monotone function, then varΛ f =
1

λ1
|f (1)− f (0)|.

If f is a ΛBV-function, then f is bounded.

If f is a ΛBV-function, then f has a finite right- and left-hand side

limit at every point of [0, 1].

If f has a finite right- and left-hand side limits at every point of

[0, 1], then f is a ΛBV-function for some Λ-sequence (λn)n∈N.
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The space ΛBV [0, 1]

The class of ΛBV-functions, that is,

ΛBV [0, 1]:={f : [0, 1]→ R : varΛ f < +∞},

endowed with the norm ‖f ‖Λ :=|f (0)|+ varΛ f is a Banach space.
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The space ΛBV [0, 1]

The class of ΛBV-functions, that is,

ΛBV [0, 1]:={f : [0, 1]→ R : varΛ f < +∞},

endowed with the norm ‖f ‖Λ :=|f (0)|+ varΛ f is a Banach space.

ΛBV [0, 1] is a Banach algebra in the norm |f |:= ‖f ‖∞ + varΛ f ,

since

varΛ(fg) ≤ ‖g‖∞ · varΛ f + ‖f ‖∞ · varΛ g .
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The space ΛBV [0, 1]

The class of ΛBV-functions, that is,

ΛBV [0, 1]:={f : [0, 1]→ R : varΛ f < +∞},

endowed with the norm ‖f ‖Λ :=|f (0)|+ varΛ f is a Banach space.

ΛBV [0, 1] is a Banach algebra in the norm |f |:= ‖f ‖∞ + varΛ f .

ΛBV [0, 1] is not separable; for δ ∈ [0, 1] consider

fδ(t) =

{
1, if t = δ,

0, if t 6= δ.
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The space ΛBV [0, 1]

The class of ΛBV-functions, that is,

ΛBV [0, 1]:={f : [0, 1]→ R : varΛ f < +∞},

endowed with the norm ‖f ‖Λ :=|f (0)|+ varΛ f is a Banach space.

ΛBV [0, 1] is a Banach algebra in the norm |f |:= ‖f ‖∞ + varΛ f .

ΛBV [0, 1] is not separable.

ΛBV [0, 1] is not reflexive (see [Prus-Wísniowski, Ruckle, 2012]).
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ΛBV-solutions to Hammerstein integral equation

Consider the nonlinear Hammerstein integral equation

x(t) = g(t) + α

∫ 1

0
k(t, s)f (x(s))ds t ∈ [0, 1], (H)

where

g ∈ ΛBV [0, 1];

f : R→ R is a Lipschitz function;

k : [0, 1]× [0, 1]→ R is a function such that varΛ k(·, s) ≤ m(s)

a.e. on [0, 1], where m : [0, 1]→ [0,+∞) is L-integrable, and

for every t ∈ [0, 1] the function s 7→ k(t, s) is L-integrable.

Theorem (Bugajewska, O’Regan, 2005)

Under these assumptions there exists ρ > 0 such that for every α

with |α| < ρ the equation (H) has a unique solution in ΛBV [0, 1].
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Lower Λ-variation

Definition

Let f : [0, 1]→ R and fix a Λ-sequence (λn)n∈N. The number

varΛf := inf
{

varΛ g : f = g a.e. on [0, 1]
}

is called the lower Λ-variation of the function f .

The vector space

ΛBV [0, 1]:=
{
f ∈ L1[0, 1] : varΛf < +∞

}
endowed with the norm

fΛ := ‖f ‖1 + varΛf is a Banach space.
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Example 2, revisited
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Basic properties of ΛBV -functions

Each f ∈ ΛBV [0, 1] has a good representative, that is, a function

ϕ : [0, 1]→ R a.e. equal to f on [0, 1] such that varΛ ϕ = varΛf .
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Basic properties of ΛBV -functions

Each f ∈ ΛBV [0, 1] has a good representative, that is, a function

ϕ : [0, 1]→ R a.e. equal to f on [0, 1] such that varΛ ϕ = varΛf .

However, a good representative may not be uniquely determined.
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Basic properties of ΛBV -functions

Each f ∈ ΛBV [0, 1] has a good representative ϕ : [0, 1]→ R.

A monotone function f : [0, 1]→ R is a good representative of

[f ] ∈ ΛBV [0, 1], if and only if it is right-continuous at 0 and

left-continuous at 1.
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A monotone function f : [0, 1]→ R is a good representative of

[f ] ∈ ΛBV [0, 1], if and only if it is right-continuous at 0 and

left-continuous at 1.

If f : [0, 1]→ R is a continuous function such that [f ] ∈ ΛBV [0, 1],

then f is a good representative of [f ].
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Basic properties of ΛBV -functions

Each f ∈ ΛBV [0, 1] has a good representative ϕ : [0, 1]→ R.

A monotone function f : [0, 1]→ R is a good representative of

[f ] ∈ ΛBV [0, 1], if and only if it is right-continuous at 0 and

left-continuous at 1.

If f : [0, 1]→ R is a continuous function such that [f ] ∈ ΛBV [0, 1],

then f is a good representative of [f ].

If f ∈ ΛBV [0, 1], then f ∈ L∞[0, 1]. Moreover, there exists a

constant cΛ such that ‖f ‖∞ ≤ cΛ
fΛ.
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ΛBV -solutions to Hammerstein integral equation

Consider the nonlinear Hammerstein integral equation

x(t) = g(t) + α

∫ 1

0
k(t, s)f (x(s))ds for a.e. t ∈ [0, 1], (H

¯
)
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ΛBV -solutions to Hammerstein integral equation

Consider the nonlinear Hammerstein integral equation

x(t) = g(t) + α

∫ 1

0
k(t, s)f (x(s))ds for a.e. t ∈ [0, 1], (H

¯
)

where
g ∈ ΛBV [0, 1];

f : R→ R is a locally Lipschitz function;

the kernel k is an L-integrable function with varΛk(·, s) ≤ m(s)

a.e. on [0, 1], where m : [0, 1]→ [0,+∞) is L-integrable.

there exists a L-measurable function ϑ : [0, 1]× [0, 1]→ R such

that ϑ(·, s) is a good representative of the equivalence class

generated by k(·, s) for a.e. s ∈ [0, 1] and for every t ∈ [0, 1]

the function s 7→ ϑ(t, s) is L-measurable.
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ΛBV -solutions to Hammerstein integral equation

Consider the nonlinear Hammerstein integral equation

x(t) = g(t) + α

∫ 1

0
k(t, s)f (x(s))ds for a.e. t ∈ [0, 1], (H

¯
)

Theorem

Under the above assumptions there exists ρ > 0 such that for every

α with |α| < ρ the equation (H
¯

) has a solution in ΛBV [0, 1].
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ΛBV -solutions to Hammerstein integral equation

Consider the nonlinear Hammerstein integral equation

x(t) = g(t) + α

∫ 1

0
k(t, s)f (x(s))ds for a.e. t ∈ [0, 1], (H

¯
)

Theorem

Under the above assumptions there exists ρ > 0 such that for every

α with |α| < ρ the equation (H
¯

) has a solution in ΛBV [0, 1].

If f is a Lipschitzian, then (H
¯

) has a unique ΛBV -solution.

Its representatives are not necessarily unique ΛBV-solutions of (H
¯

).

Among all the solutions of (H
¯

) in ΛBV [0, 1] ‘the best’ ones are the

good representatives of the unique solution in ΛBV [0, 1].
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