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Generalized ODEs

e Let X be a Banach space, O C X an open subset,
Q=0 x [ty,+o0) and G : Q — X.

Definition
We say that x : [a, 8] C [to,+00) — X is a solution of the
generalized ODE

dx
4= DG(x, t), (1)

in [a, 5] if (x(t),t) € Q for every t € [a, ] and

X1 - x(2) = [ D6(x(r).)

V7, v e [a, Bl



Measure FDEs

Measure FDEs (MFDEs) are equations of the following form
Dx = f(x, t)Dg, (2)

where x; is given by x¢(0) = x(t + 6),6 € [—r,0], with r > 0,
f:G([—r,0],R") x [to, +00) — R", with ty > 0, Dx and Dg are
the distributional derivatives with respect to x and g, in the sense
of distributions of L. Schwartz.

When g(t) = t, the equation (2) becomes a functional differential
equation in the usual sense.



Integral form of a MFDE

The integral form equivalent to (2) is given by

M(0) = x(t0) + [ Flx09)dg(6), € lto, ),

to

where we consider the Kurzweil-Stieljtes integral taken with re-
spect to the nondecreasing function g : [tg, +00) — R.

The integral fab f(t)dg(t) is a particular case of the Kurzweil
integral [ DU(7,t), when U : [a,b] x [a,b] — X is given by
U(r, t) = f(7)g(t).



Relation between equations

We say that a set O C BG ([tg — r, +00),R") has the prolongation
property, if for every y € O and t € [tg — r,+0), the function ¥
given by
t), to—r<t<t
(1) = Y(_), -r<t<t
y(t), t<t<oo

also belongs to O. Let S = {y+; y € O, t € [ty,0)}.



We consider the following MFDE with perturbations

Dy = f (yt,t) Dg + p(t)Du. (3)
where the functions g, u : [ty, +00) — R are nondecreasing,
f:S x|[ty,+00) = R" and p: [tg,0) — R". Its integral form is
given by

t t
y(0) = ylt)+ [ Flms)de(s)+ [ p(s)du(s). ¢ € [0

to to

where the integrals are considered in the Kurzweil-Stieltjes's sense.



We consider the following MFDE with perturbations

Dy = f (yt, t) Dg + p(t)Du. (3)

where the functions g, u : [ty, +00) — R are nondecreasing,
f:S x|[ty,+00) = R" and p: [tg,0) — R". Its integral form is
given by

t

V(O =)+ [ FOss)dg(s)+ [ pe)aus) €l

to to

where the integrals are considered in the Kurzweil-Stieltjes's sense.
We consider the following hypotheses on the functions f and p:



(H1) The Kurzweil-Stieltjes integral ftg f(ys,s)dg(s) exists for
every y € O and t € [tp, 0).



(H1) The Kurzweil-Stieltjes integral ftz f(ys,s)dg(s) exists for
every y € O and t € [tp, 0).

(H>) There exists a function M : [tp,00) — R locally
Lebesgue-Stieltjes integrable with respect to g such that

[ 0 s)dets)

< / " M(s)de(s)

VyeOandu,v € [ty,)



(H1) The Kurzweil-Stieltjes integral ftz f(ys,s)dg(s) exists for
every y € O and t € [tp, 0).

(H>) There exists a function M : [tp,00) — R locally
Lebesgue-Stieltjes integrable with respect to g such that

[ 10es)de)] < [ mis)ag(s

VyeOandu,v € [ty,)
(H3) There exists a function L : [tp, 00) — R locally
Lebesgue-Stieltjes integrable with respect to g such that

[f Ys,5) — (25, 5)]dg(s)| <

/V L(5)llys — 2l de(s)

Vy,ze€ O and u,v € [ty, ).



(Hs) The Kurzweil-Stieltjes integral ft(t) p(s)du(s) exists for every
t € [tg, 00);



(Hs) The Kurzweil-Stieltjes integral ft(t) p(s)du(s) exists for every
t € [to, 00);

(Hs) There exists a function K : [tg, 00) — R locally
Lebesgue-Stieltjes integrable with respect to v such that, for
every w, v € [tg,00), we have

| po)auts)

w

< /v K(s)du(s).

w



For y € O and t € [ty, +00), we define
0, to—r<v< to,

9
<P <
Fly, ) /Ofys, g(s) o <Y<t < +oo,

/fys, g(s) t<¥<+o00

and

0, to—f<’l9<t0>
9
/p u(s) o <Y<t < +oo,

p u(s) t <9< +oo.



Then,
G(y,t)=F(y,t)+ P(t) (4)

defines an element G (y, t) from BG™~ ([ty — r, +00),R") and
G (y,t) (V) € R" is the value of G (y,t) at the point
¥ € [ty — r,+00), which means,

G : O X [ty,+0) = BG ([to — r, +00),R").
Consider the following GODE

dx

= = DG(x, 1) (5)

where the function G is given by (4).



Theorem (Correspondence between the equations)

Let O C G([to — r,to + o], R") with the prolongation property,
S={x; x€ O, t € [to,tp + 0]} and ¢ € S. Suppose that
g : [to,to + 0] — R and v : [ty, to + 0] — R are nondecreasing
functions, f : S x [to, to+ o] — R" satisfies conditions (H1), (H2),
(H3) and p : [to, to + o] — R" satisfies conditions (Hs) and (Hs).

(i) Let y : [to — r,to + 0] — R" be a solution of the measure
functional differential equation with perturbations

(6)

Dy = f(y:, t)Dg + p(t)Du, t € [to, to + o],
yto = ¢

For every t € [to, tp + 0], let

. Y(ﬁ)v 19G[’-LO_">t]>
xO() = {y(t), 0 € [t, to + ol.



Theorem (Correspondence between the equations)
Then the function x : [to, tg + 0] — G([to — r,to + 0|, R") is a
solution of the GODE (5) with

#(9 — to), to —r <V < to,
d)(O), th<V¥<ty+o.

x(to) (V) = {



Theorem (Correspondence between the equations)
(ii) Reciprocally, let G be given by (4). Suppose that
x : [to, to + 0] — O is a solution of the GODE

dx

— =DG(x,t
dT (X’ )’

with the following initial condition

&0 — ty), to —r <V < tg,
#(0), to <V < tg+o.

x(to)(V) = {



Theorem (Correspondence between the equations)
Then the function y : [tp — r, to + o] — R” defined by

gy ) x(0)W0), to—r<i<t
r= x(W)(9), o<V <to+o

is a solution of the measure functional differential equation with per-
turbations

(7)

Dy = f(y¢, t)Dg + p(t)Du, t € [to, to + o],
Ytg = ¢



Lyapunov stability for GODEs



Let X be a Banach space and B. = {x € X;||x|| < ¢}, ¢ > 0.
Define Q = B, x [tp,00) and let F: Q — X.
Consider the GODE

dx
4= DF(x(7),t) (8)

where we suppose that F(0,t) — F(0,s) = 0 for t,s > to. Then,
v [y, v] C [to, +00),

/ " DF(0, ) = F(0,v) — F(0,7) = 0
Y

and, therefore, x = 0 is a solution of (8) in [ty, +00).



The trivial solution x = 0 of (8) is
(i) Regularly stable, if Ve >0, 36 = d(¢) > 0 such that if
X [v,v] = Be, with tg <y < v < +00, is a regulated
function which satisfies

[X(7)Il <0 and  sup X(S)—X(’Y)—/s DF(x(7), t)
Y

s€[y,v]

<0,

then
IX(t)l| <&, te€l[yv]



(i) Regularly attracting, if 309 > 0 and Ve >0, 3
T =T(e) > 0and p=p(e) > 0 such that if
X [v,v] = Be, with tg <y < v < +00, is a regulated
function satisfying

[X(7)[l < do and  sup
s€ly,v]

x(s)~x(1) - [ DF(x(r). 1

o

< p,

then
IIx(¢)|| <e, fortel[y,v]N[y+ T,+oc0)and vy > to.

(iii) Regularly asymptotically stable, if it is regularly stable and
regularly attracting.



Definition _ _ _
We say that V : [ty, +00) X X — R is a Lyapunov functional (with
respect to the GODE (8)), if the following conditions are satisfied:

(i) V(-,x): [to, +00) — R is left-continuous in (tp, +00), V
x € X;

(il) 3 a function b: RT™ — R™, continuous and strictly
increasing, satisfying b(0) = 0 (we say that such function is
of Hahn class), such that

V(t,x) = b([Ix]]),

V t € [to, +00) and x € X;



(i) V x : [y, v] = X solution of (8), with [y, v] C [ty, +00), we
have

V(t, x(t)) = “,;nj;ip V(t+n, x(t +:77)) — V(t,x(t))

<0

Y

t e ly,v]



Theorem L
Let V : [to,+o0) x B, — R be a Lyapunov functional, where

B,={y € X:|yll <p} 0<p<c Supposethat V satisfies
the following conditions:

(i) V(t,0)=0, t € [ty, +00);
(i) There exists a constant K > 0 such that

V(t,2) = V(t,y)| < Kllz—yl, t€to,+o0), z,y € B,.

Then the trivial solution x = 0 of (8) is regularly stable.



Theorem .
Let V : [tp,+00) x B, — R be a Lyapunov functional, where

B, ={y € X: |yl <p} 0<p < c. Suppose V satisfies
the conditions (i) and (ii) from the previous Theorem. Moreover,
suppose there exists a continuous function ¢ : X — R, satisfying
®(0) = 0 and d(x) > 0 for x # 0, such that for every solution
x:[y,v] = B, of (8), with [y, v] C [to, +00), we have

V(t,x(t)) < —®(x(t)), te[y,v] (9)

Then the trivial solution x = 0 of (8) is regularly asymptotically
stable.



Lyapunov stability for measure

FDEs



Consider the measure FDE

Dy = f(y:, t)Dg, (10)

with f : § X [tg,+00) — R"”, where S = {x;; x € O, t €
[to, +o0)} e O C BG([ty — r,+00),R") has the prolongation
property.

We also consider g : [tg, +00) — R nondecreasing and (0, t) =
0 for every t € [tp,+00) and f satisfies conditions (Hp)-(H3).
Thus y = 0 is a solution of (10).



Definition
The trivial solution y = 0 of (10) is
(i) Stable in Lyapunov'’s sense, if ¥ € > 0 and every v € R,
v > ty, 39 = d(e,v) > 0 such that, if p € S and
y : [v,v] = R, with [y, v] C [to, +00), is a solution of (10)
such that y, = ¢ and

then
1Ve(v,)loo <&, tE€[y,v]

(ii) Uniformly stable, if the number ¢ in the previous item is
independent from ~.



Definition ) _
(iii) Uniformly asymptotically stable, if 3 5o > 0 and V ¢ > 0, 3

T = T(e) > 0such that,if ¢ € S, and y : [y, v] — R”, with
[v, v] C [to, +00), is a solution of (10) such that y., = ¢ and

”¢HOO < 507

then

1Ve(7, D)oo <&, t€[y,v][N[y+ T,+00).



Definition
We say that U : [ty, +00) x G~ ([-r,0],R") — R is a Lyapunov
functional (with respect to the measure FDE (10)), if the following
conditions hold:
(i) U(-,v) : [to, +00) — R is left-continuous in (ty, +00), for
every ¢ € G~ ([—r,0],R");
(i) There exists a function of Hahn class b: Rt — R™ such

that
u(t,v) > b([l)),

for every t > ty and ¢ € G~ ([—r, 0], R");

(iii) The inequality
D*U(t,¢) <0

holds for each t > tg and ¢p € G~ ([—r, 0], R").



Let t > ty and ¢ € G~ ([—r,0],R"). We denote by y(t,7) the
solution of MFDE (f) with initial condition y; = 1) and x,; the solu-
tion of the GODE % = DG(x, t) with initial condition x,(t) = X,
where X(7) = (1 —t), t —r <7 < t, and x(7) = ¥(0), T > t.
Then

o (t,xp(t)) — (t,y:(t,¢)) is a one-to-one application.

o We define V : [ty, +00) x O — R by
V(ta X1/J(t)) = U(tayt(tv ¢))
Then the righthand derivative D" U(t, 1)) can be written

74 -V
D+U(t,¢) — lim sup (t+777X1/1(t+77)) (t,X¢(t))’ t> to.
n—0+ n

We obtain the following theorems for MFDEs:



Theorem
Consider the measure functional differential equation (10). Sup-

pose the function f : S x [tp,00) — R” satisfies the conditions
(H1), (H2) and (H3) and U : [tg, +00) x E, — R is a Lyapunov
functional. Moreover, assume that the following conditions are
satisfied:

(i) U(t,0) =0, t € [to, +o0);
(ii) There exists a constant K > 0 such that

[U(t,9) = U(t,9)] < Kl =, t € [to,+00), ,9 € E).

Then the trivial solution y = 0 of (10) is uniformly stable.



Idea of the proof
Define

e The solution y = 0 of (10) is said to be integrally stable, if

for every € > 0 there is a 6 = d(¢) > 0 such that if p € S
with [|?]|s < ¢ and

sup < 0,

te[y,v]

t
| ployuts
¥
where ty < v < v < o0, then

17:(7; ¥)lloe <&, for every t € [y,v],

where y(t;v,) is a solution of the MFDE with
perturbations satisfying y, = 1.



Idea of the proof
e The solution y = 0 of (10) is called integrally attracting, if

there is a 6 > 0 and for every € > 0, there exist a
T =T(e) >0and a p=p(e) > 0 such that if

[¥]lc <&  and sup
tefy,v]

<p,

t

| plyuts
~

where tg < v < v < o0, then

1¥e(7,Y)||loo <€ forall t>~v+ T, te€][y,v],

where y(t;,1) is a solution of the MFDE with
perturbations satisfying y, = 1.

e The solution y = 0 of (10) is called integrally asymptotically
stable, if it is integrally stable and integrally attracting.



Idea of the proof
Since we have U(t,y:(t,¥)) = V(t,xy(t)), one can show that

the trivial solution of the GODE related to the MFDE is regularly

stable.



Idea of the proof
Since we have U(t,y:(t,¥)) = V(t,xy(t)), one can show that
the trivial solution of the GODE related to the MFDE is regularly

stable.

Theorem
Regular stability = Integral stability



Theorem _ _ _ _
Consider the measure functional differential equation (10). Sup-

pose U : [to, +00) x?p — R is a Lyapunov functional and satisfies
conditions (i) and (ii) from the previous Theorem. Furthermore,
suppose there exists a continuous function A : RT™ — R™ such
that A(0) = 0 and A(x) > 0 if x # 0, such that, for every ¢ € E,,
we have

DTU(t,y) < —A(ll%l), t= to. (11)

Then, the trivial solution y = 0 of (10) is uniformly asymptoticaly
stable.
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