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What is the topological degree?

The degree is a number, associated to an equation

(1) f(x) = y, x ∈ U,

in order to obtain information about the set of solutions. In the

above equation we can imagine that (for example)

i) f : X → Y is a given function, supposed at least continuous,

ii a) X and Y are Euclidean spaces or real, finite dimensional, dif-

ferentiable manifolds or

ii b) Banach spaces or manifolds, possibly of infinite dimension,

iii) y is a fixed element of Y ,

iv) U is an open subset of X.

1



In finite dimension

In Rn consider the set T of the admissible triples,

T = {(f, U, y)},

where

i) f : Rn → Rn is continuous,

ii) U is an open subset of Rn,

iii) y ∈ Rn is such that f−1(y) ∩ U is compact.

A topological degree is a map

deg : T → Z (or deg : T → Z2)

verfying some particular properties.

Such properties give information about f−1(y) ∩ U .
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The degree theory in finite dimension is commonly known as Brou-

wer degree theory.

L.E.J. Brouwer, Uber Abbildung von Mannigfaltigkeiten, Math.

Ann. 71 (1912), pp. 97–115.

M. Nagumo, A theory of degree of mapping based on infinitesimal

analysis, Amer. J. of Math., 73 (1951), 485–496.

In the particular case of admissible triples (f, U, y) such that f is C1

and y is a regular value for f in U , the Brouwer degree of (f, U, y)

is given by

(2) degB(f, U, y) =
∑

x∈f−1(y)∩U
signDf(x),

where signDf(x) is the sign of the determinant of the Jacobian

matrix associated to Df(x).
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Brouwer degree for continuous maps between finite dimensional

oriented manifolds.

Let M and N be two oriented smooth real manifolds of the same

finite dimension.

In the particular case when f : M → N is C1, U is an open subset

of M , y ∈ N is such that f−1(y)∩U is compact (i.e. we call (f, U, y)

admissible), we put

(3) degB(f, U, y) =
∑

x∈f−1(y)∩U
signDf(x),

where signDf(x) = 1 if Df(x) preserves the orientations of the

tangent spaces TxM and Tf(x)N , and signDf(x) = −1 otherwise.

In the book of A. Dold, Lectures on algebraic topology, Springer-

Verlag, Berlin, 1972, we find an extension to nonorientable mani-

folds.

4



In infinite dimension?

It is not possible to construct a degree theory for (simply)

continuous maps between infinite dimensional Banach spaces.

Generally, we have obstructions in the attempt to extend degree

to infinite dimension. Let us mention three:

– if f : E → F is C1, between Banach spaces, and x is a regular

point, it is not clear how we can define a sign for the Fréchet

derivative Df(x) and thus it is not clear how to generalize

formula (??);

– a general result ensuring the approximation of continuous maps

by smooth maps does not exist;

– if U is bounded, f is continuous on U and y is a given element

in F , then f−1(y) ∩ U is not necessarily compact.
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The first (classical) construction:

J. Leray and J. Schauder, Topologie et équations fonctionnelles,

Ann. Sci. École Norm. Sup., 51 (1934), 45–78.

Other important contribution of 1936:

R. Caccioppoli, Sulle corrispondenze funzionali inverse diramate:

teoria generale e applicazioni ad alcune equazioni funzionali non

lineari e al problema di Plateau, Opere scelte, vol. II, Edizioni

Cremonese, Roma, 1963, 157–177.

The Leray-Schauder degree is defined for maps of the form

f : E → E, f(x) = x− k(x),

where E is a real Banach space, k is completely continuous.

The admissible triples are those (f, U, y) such that f is as above,

y belongs to E and U ⊆ E is open with f−1(y) ∩ U compact.
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Crucial properties of completely continuous maps:

(P1) Given a completely continuous map k : E → E and a closed

bounded subset B of E, for any ε > 0 there exists a continuous

map k1 : B → E such that

1. k1(B) is contained in a finite dimensional subspace of E,

2. supx∈B ‖k(x)− k1(x)‖ < ε.

(P2) I − k is proper on closed bounded subsets of E.

Given an admissible triple (f, U, y), let D be an open bounded

subset of U containing f−1(y) ∩ U , such that D ⊆ U .

Write f(x) = x− k(x), with k completely continuous.

Let k1 : D → E be a continuous approximation of k1 with image

contained in a finite-dimensional subspace E1 of E.

Define

(4) degLS(f, U, y) = degB(I − k1, E1 ∩D, y).
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Let us point out that in the Leray–Schauder degree a concept of

orientation in infinite dimension is implicitely contained.

Not an orientation of spaces, but an orientation of maps.

In fact, observe that the set GLc(E) of automorphisms of the form

I−K, with K linear and compact, has two connected components

(while GL(E) could be connected).
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The uniqueness of the degree

H. Amann and S.A. Weiss, On the uniqueness of the topological

degree, Math. Z., 130 (1973), 39–54.

The Brouwer degree and the Leray-Schauder degree are uniquely

determined by three fundamental properties, considered as axioms

(which we recall in the case of Leray–Schauder degree).

i) (Normalization) degLS(I, E,0) = 1 (I is the identity of E).

ii) (Additivity) Given an admissible triple (f, U, y) and two disjoint

open subsets U1, U2 of U such that f−1(y)∩U ⊆ U1∪U2, then,

degLS(f, U, y) = degLS(f |U1
, U1, y) + degLS(f |U2

, U2, y).

iii) (Homotopy invariance) Let H : U × [0,1] → F be of the form

H(x, t) = x − k(x, t), with k completely continuous. Let y :

[0,1]→ F be a continuous path. If the set

{(x, t) ∈ U × [0,1] : H(x, t) = y(t)}

is compact, then degLS(Ht, U, y(t)) in independent of t ∈ [0,1].
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Extensions of Leray–Schauder degree

S. Smale (1965): nonlinear (C2) Fredholm maps between Banach

space. Degree in Z2 (with no use of orientation).

F. Browder and R. Nussbaum (1969): noncompact perturba-

tions of the identity in a Banach space (using the Kuratowski

measure of noncompacness).

K.D. Elworthy and A.J. Tromba (1970): oriented degree for

nonlinear Fredholm maps of index zero between Banach manifolds

(introducing the notion of orientation for an infinite dimensional

manifold).

J. Mawhin (1972): Coincidence degree: for special perturbations

of a linear Fredholm operator between Banach spaces.

V.G. Zvyagin and N.M. Ratiner (1991): following the concept

of orientation of Elworty and Tromba, degree for completely con-

tinuous perturbations of nonlinear Fredholm maps of index zero

between Banach spaces.
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P.M. Fitzpatrick, J. Pejsachowicz and P.J. Rabier (1991):

orientation of maps instead of spaces. They introduce a degree

for (oriented) nonlinear Fredholm maps of index zero between

Banach spaces.

P. Benevieri and M. Furi (1997): degree for nonlinear Fredholm

maps of index zero between Banach manifolds with a different

notion of orientation of maps with respect to the previous one

given by F. P. and R..

P. Benevieri and M. Furi (2005): degree for locally compact

perturbations (extended to condensing) perturbations of nonlinear

Fredholm maps of index zero between Banach spaces.

P. Rabier and M. Salter (2005): (with a slight different approa-

ch) degree for completely continuous perturbations of nonlinear

Fredholm maps of index zero between Banach spaces.
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Let us sketch the costruction of the degree for the locally compact

perturbations of nonlinear Fredholm maps between Banach spaces.

The problem of orientation:

we define a concept of orientation for linear Fredholm operators

of index zero between Banach spaces:

E and F real Banach spaces, L : E → F linear Fredholm operator

of index zero.

E = E1⊕KerL, F = L(E1)⊕ F2. Thus L can be represented by a

matrix of operators (
L11 0

0 0

)
,

where L11 is an isomorphism.
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Consider two linear operators A,B : E → F , represented by

A =

(
0 0
0 A1

)
e B =

(
0 0
0 B1

)
, with A1, B1 : KerL→ F2 isomor-

phisms.

We say that A and B are equivalent if the determinant of B−1
1 A1 is

positive (it does not depend on the choice of the basis on KerL).

The set of these “correctors” (as A and B above) has two equi-

valence classes. A choice of one of them is an orientation of

L.

Let g : E → F be a (nonlinear) Fredholm map of index zero.

Assume Dg(x) oriented for any x ∈ E.

By a notion of “continuous transport” of the orientation Dg(x),

moving x in E, we define an orientation of g as a “continuous”

choice of an orientation of Dg(x) for any x ∈ E.
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If, for a given x, Dg(x) is an isomorphism, we assign
signDf(x) = 1 if the trivial operator belongs to the chosen

orientation of Dg(x)

signDf(x) = −1 otherwise.

If U is open in E, g−1(y) ∩ U is compact and y is a regular value

for g in U , we define

(5) deg(g, U, y) =
∑

x∈g−1(y)∩U
signDg(x).

The degree is then extended to the triples (g, U, y) with y not

necessarily regular value of g in U .
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Degree for locally compact perturbations of nonlinear Fredholm

maps of index zero between Banach spaces.

We call these maps quasi-Fredholm maps.

We define a concept of orientation for the quasi-Fredholm maps.

Definition 1. Let g : Ω→ F be a Fredholm map of index zero and

k : E → F a locally compact map. The map f : E → F , defined

by f = g− k, is called a quasi-Fredholm map and g is a smoothing

map of f .

The following definition provides an extension to quasi-Fredholm

maps of the concept of orientation of Fredholm maps.

Definition 2. An orientation for a quasi-Fredholm map f = g− k :

E → F is an orientation of the smoothing map g.
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Let f = g − k be an oriented quasi-Fredholm map, (f, U, y) an

admissible triple (i.e. f−1(y) ∩ U compact).

Step 1. (Finite-dimensional reduction process) Suppose k(U) con-

tained in a finite dimensional subspace of F .

Let Z be a finite-dimensional subspace of F and W an open

neighborhood of f−1(y) in U , with g transverse to Z in W .

Assume that Z contains y and k(U) and suppose Z oriented.

M := g−1(Z) ∩W is a C1 manifold and dimM = dimZ.

M can be oriented with an orientation induced by the orientations

of g and Z. Then we define

(6) degqF (f, U, y) = degB(f |M ,M, y),

The above definition is well posed in the sense that the right hand

side of (??) is independent of the choice of the smoothing map g,

the open set W and the subspace Z.

Step 2. The degree is extended to general admissible triples.
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Fundamental properties

i) (Normalization) Let L : E → F be a naturally oriented isomor-

phism. Then

degqF (L,E,0) = 1 (= signL).

ii) (Additivity) Given an admissible triple (f, U, y) and two disjoint

open subsets U1, U2 of U such that f−1(y)∩U ⊆ U1∪U2, then,

degqF (f, U, y) = degqF (f |U1
, U1, y) + degqF (f |U2

, U2, y).

iii) (Homotopy invariance) Let H : U × [0,1] → F be an oriented

quasi-Fredholm homotopy. Let y : [0,1] → F be a continuous

path. If the set

{(x, t) ∈ U × [0,1] : H(x, t) = y(t)}

is compact, then degqF (Ht, U, y(t)) does not depend on t ∈
[0,1].
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Main result: there exists at most one real map defined in the

class of quasi-Fredholm admissible triples which verifies the three

fundamental properties: normalization, additivity and homotopy

invariance. Thus, such a map turns out to be integer valued and

necessarily coincides with the degree for oriented quasi-Fredholm

maps
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Sketch of the process.

We denote by T the family of all admissible triples and by d : T → R
a map verifying the three fundamental properties.

Step 1. We prove that, if L is an oriented isomorphism, then

(7) d(L,E,0) = signL.

Step 2. Using the above equality, the additivity and the homotopy

invariance property, we show that, for every triple (f, U, y) such that

f |U is C1 and y is a regular value of f in U , we have

(8) d(f, U, y) =
∑

x∈f−1(y)∩U
signDf(x).

Step 3. Then we prove the uniqueness of d on the subfamily S of

T of the triples (f, U, y) such that f is C1 on U .
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Step 4. We show that the uniqueness of d on S implies the

uniqueness of d on the subfamily T of those admissible triples

(f, U, y) such that we can write f = g− k with k(U) is contained in

a finite dimensional subspace of F .

(In this step it is contained one of the most important difficulties

of process.)

As it is well know, a real continuous map, defined in a compact

subset of Rn, can be approximated, in the supremum norm, by

a smooth map, defined on the whole Rn. As far as we know, an

analogous result does not hold if Rn is replaced by a general Banach

space E, unless the compact domain of the map is contained in a

finite-dimensional subspace of E (recall that any finite-dimensional

subspace of E is the image of a bounded linear projector).
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Thanks to the following lemma by Pejsachowicz and Rabier

(in A substitute for the Sard-Smale theorem in the C1 case, J.

Anal. Math. 76 (1998), 265–288),

an approximation result holds true even in the case when the do-

main of the map is contained in a finite-dimensional submanifold

of E.

Lemma 3 (Pejsachowicz–Rabier). Consider a finite-dimensional

C1 submanifold M of E and a compact subset K of M . Then,

there exist a finite-dimensional subspace E1 of E and a C1 diffeo-

morphism w : E → E such that w(K) ⊆ E1.

As a consequence we obtain the following proposition.
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Proposition 4. Let K be a compact subset of E. Assume that

there exists a finite dimensional submanifold M of E containing

K. Let φ : K → R be a continuous map. Given a positive ε, there

exists a bounded C1 map η : E → R such that

sup
x∈K
|φ(x)− η(x)| < ε.

Let now f = g−k be an oriented quasi-Fredholm map and (f, U, y)

an admissible triple (i.e. f−1(y) ∩ U compact).

Suppose k(U) contained in a finite dimensional subspace of F .

Let Z be a finite-dimensional subspace of F and W an open

neighborhood of f−1(y) in U , with g transverse to Z in W .

Assume that Z contains y and k(U) and suppose Z oriented.

M := g−1(Z) ∩W is a C1 manifold and dimM = dimZ.

We construct a suitable compact subset S of E, with f−1(y)∩U ⊆
S ⊆M , and a compact C1 map h : E → F , having image contained

in Z, which is an approximation of k on S.
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Applying the homotopy invariance property we have

(9) d(g − k, U, y) = d(g − h, U, y).

Step 7. In this final step we conclude the process, showing the

uniqueness of d on the whole family T .

* * *

Finally, since the function deg verifies the three fundamental pro-

perties, one will have d = deg.
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Thank you!
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