Linear subsets of nonlinear sets in topological vector spaces

Daniel Pellegrino

Universidade Federal da Paraiba, Brazil

Sao Carlos, June 2013
This talk is based on a *survey* in collaboration with
This talk is based on a survey in collaboration with

Luis Bernal (Univ. Sevilla, Spain)
This talk is based on a *survey* in collaboration with

Luis Bernal (Univ. Sevilla, Spain)

J. Seoane-Sepúlveda (Univ. Complutense de Madrid, Spain)...
This talk is based on a survey in collaboration with

Luis Bernal (Univ. Sevilla, Spain)

J. Seoane-Sepúlveda (Univ. Complutense de Madrid, Spain)...

This talk is based on a survey in collaboration with

Luis Bernal (Univ. Sevilla, Spain)

J. Seoane-Sepúlveda (Univ. Complutense de Madrid, Spain)...

The main goal of this talk.....
This talk is based on a survey in collaboration with

Luis Bernal (Univ. Sevilla, Spain)

J. Seoane-Sepúlveda (Univ. Complutense de Madrid, Spain)...

The main goal of this talk.....is to provide an overview (and a propaganda!!) of a relatively new area of research connecting analysis and algebra which we call lineability....
In 1872, Weierstrass constructed a continuous nowhere differentiable function on \mathbb{R}.

A function such as $f(x) = \sum_{n=0}^{\infty} \cos(3^n \pi x)^{2^n}$ enjoys this property. In the literature, this example is known as Weierstrass' monster although earlier Bolzano (1822) and Cellérier (1860) already found functions of this type!
In 1872, Weierstrass constructed a continuous nowhere differentiable function on \mathbb{R}.

A function such as $f(x) = \sum_{n=0}^{\infty} \cos(3^{n} \pi x)^{2}$ enjoys this property. In the literature, this example is known as Weierstrass' monster although earlier Bolzano (1822) and Cellérier (1860) already found functions of this type!
In 1872, **Weierstrass** constructed a continuous nowhere differentiable function on \mathbb{R}.

A function such as

$$f(x) = \sum_{n=0}^{\infty} \frac{\cos(3^n \pi x)}{2^n}$$

enjoys this property.
In 1872, **Weierstrass** constructed a continuous nowhere differentiable function on \(\mathbb{R} \).

A function such as

\[
 f(x) = \sum_{n=0}^{\infty} \frac{\cos(3^n \pi x)}{2^n}
\]

enjoys this property.

In the literature, this example is known as **Weierstrass’ monster** although earlier **Bolzano** (1822) and **Cellérier** (1860) already found functions of this type!
How many examples are like Weierstrass’ monster?

Many functions enjoying this “exotic” property have been constructed since the 1800’s. Moreover:

1966: Gurariy showed that there exists an infinite dimensional linear space every nonzero function of which is continuous and nowhere differentiable on \mathbb{R}.

1999: Fonf, Gurariy, and Kade˘ c proved that the above space can be chosen to be closed in $C\left[0,1\right]$.

Rodríguez-Piazza (1995), Hencl (2000), Bayart and Quarta (2007), among others, have improved these spaces by adding extra pathologies to Weierstrass’ monster.
MANY functions enjoying this "exotic" property have been constructed since the 1800's.
How many examples are like Weierstrass’ monster?

MANY functions enjoying this “exotic” property have been constructed since the 1800’s. Moreover:
How many examples are like Weierstrass’ monster?

MANY functions enjoying this “exotic” property have been constructed since the 1800’s. Moreover:

- **1966**: Gurariy showed that there exists an infinite dimensional linear space every nonzero function of which is continuous and nowhere differentiable on \mathbb{R}.

Daniel Pellegrino
Linear subsets of nonlinear sets in topological vector spaces
How many examples are like Weierstrass’ monster?

MANY functions enjoying this “exotic” property have been constructed since the 1800’s. Moreover:

- **1966**: Gurariy showed that there exists an infinite dimensional linear space every nonzero function of which is continuous and nowhere differentiable on \mathbb{R}.

- **1999**: Fonf, Gurariy, and Kadeč proved that the above space can be chosen to be closed in $C[0,1]$.

Daniel Pellegrino
Linear subsets of nonlinear sets in topological vector spaces
How many examples are like Weierstrass’ monster?

MANY functions enjoying this “exotic” property have been constructed since the 1800’s. Moreover:

- **1966**: Gurariy showed that there exists an infinite dimensional linear space every nonzero function of which is continuous and nowhere differentiable on \mathbb{R}.
- **1999**: Fonf, Gurariy, and Kadeč proved that the above space can be chosen to be closed in $C[0,1]$.
- Rodríguez-Piazza (**1995**), Hencl (**2000**), Bayart and Quarta (**2007**), among others, have improved these spaces by adding extra pathologies to Weierstrass’ monster.
Gurariy’s results from 1966 and 1999 lead to the introduction of the following concept:

Definition (Gurariy). Let X be a topological vector space and M be a subset of X. M is said to be spaceable if $M \cup \{0\}$ contains a closed infinite dimensional subspace. M is said to be lineable if $M \cup \{0\}$ contains an infinite dimensional vector space. M is called λ-lineable if it contains a vector space of dimension λ. As we will comment later, it is not difficult to see that there may not exist a maximal λ satisfying the above definition.
Gurariy’s results from 1966 and 1999 lead to the introduction of the following concept:

Definition (Gurariy). Let X be a topological vector space and M be a subset of X.
Gurariy’s results from 1966 and 1999 lead to the introduction of the following concept:

Definition (Gurariy). Let X be a topological vector space and M be a subset of X.

- M is said to be **spaceable** if $M \cup \{0\}$ contains a *closed* infinite dimensional subspace.

- M is said to be **lineable** if $M \cup \{0\}$ contains an infinite dimensional vector space.

- M is called **λ−lineable** if it contains a vector space of dimension λ.

As we will comment later, it is not difficult to see that there may not exist a maximal λ satisfying the above definition.
Gurariy’s results from 1966 and 1999 lead to the introduction of the following concept:

Definition (Gurariy). Let X be a topological vector space and M be a subset of X.

- M is said to be **spaceable** if $M \cup \{0\}$ contains a *closed* infinite dimensional subspace.
- M is said to be **lineable** if $M \cup \{0\}$ contains an infinite dimensional vector space.
Gurariy’s results from 1966 and 1999 lead to the introduction of the following concept:

Definition (Gurariy). Let X be a topological vector space and M be a subset of X.

- M is said to be **spaceable** if $M \cup \{0\}$ contains a *closed* infinite dimensional subspace.
- M is said to be **lineable** if $M \cup \{0\}$ contains an infinite dimensional vector space.
- M is called **λ–lineable** if it contains a vector space of dimension λ.

As we will comment later, it is not difficult to see that there may not exist a maximal λ satisfying the above definition.
Gurariy’s results from 1966 and 1999 lead to the introduction of the following concept:

Definition (Gurariy). Let X be a topological vector space and M be a subset of X.

- M is said to be **spaceable** if $M \cup \{0\}$ contains a *closed* infinite dimensional subspace.
- M is said to be **lineable** if $M \cup \{0\}$ contains an infinite dimensional vector space.
- M is called **λ–lineable** if it contains a vector space of dimension λ.

As we will comment later, it is not difficult to see that there may not exist a maximal λ satisfying the above definition.
With the new terminology we can re-write the results of Gurariy as:
With the new terminology we can re-write the results of Gurariy as:

Theorem (Gurariy, 1966)

The set of continuous nowhere differentiable functions in \mathbb{R} is lineable.
With the new terminology we can re-write the results of Gurariy as:

Theorem (Gurariy, 1966)

The set of continuous nowhere differentiable functions in \(\mathbb{R} \) is lineable.

Theorem (Fonf, Gurariy, and Kadeč, 1999)

The set of continuous nowhere differentiable functions on \(C[0, 1] \) is spaceable.
With the new terminology we can re-write the results of Gurariy as:

Theorem (Gurariy, 1966)

The set of continuous nowhere differentiable functions in \(\mathbb{R} \) is lineable.

Theorem (Fonf, Gurariy, and Kadeč, 1999)

The set of continuous nowhere differentiable functions on \(C[0, 1] \) is spaceable.

An old result of Levine and Milman is also illustrative...
Lineability and Spaceability. The basics

With the new terminology we can re-write the results of Gurariy as:

Theorem (Gurariy, 1966)

The set of continuous nowhere differentiable functions in \(\mathbb{R} \) is lineable.

Theorem (Fonf, Gurariy, and Kadeč, 1999)

The set of continuous nowhere differentiable functions on \(C[0,1] \) is spaceable.

An old result of Levine and Milman is also illustrative...

Theorem (Levine and Milman, 1940)

The subset of \(C[0,1] \) of all functions of bounded variation is not spaceable.
The term lineability was first used by Aron, Gurariy, Seoane-Sepulveda in

Around that time and since then, many authors have shown their interest in this topic...
where do we found lineability?

Lineability and spaceability can be investigated in several different contexts.....for instance....
Different directions in the study of lineability

Sets of zeroes of polynomials in Banach spaces

Different directions in the study of lineability

Hypercyclicity and close subjects

- Shkarin (2010)
Different directions in the study of lineability

Continuous nowhere differentiable functions in $C[0, 1]$

- Rodríguez-Piazza (1995).
- Bayart, Quarta (2007).
Different directions in the study of lineability

Continuous nowhere differentiable functions in $C[0, 1]$
- Rodríguez-Piazza (1995).
- Bayart, Quarta (2007).

Norm-attaining functionals
- –, Teixeira (2009).
- García, Puglisi (2011).
Different directions in the study of lineability

Subsets of $\mathbb{R}^\mathbb{R}$

- Gurariy, Quarta (2004).
- Bayart, Quarta (2007).
- Conejero, Jimenez-Rodríguez, Muñoz, Seoane-Sepúlveda (2012).
Different directions in the study of lineability

Series and summability

different directions in the study of lineability

complex analysis and holomorphy

Different directions in the study of lineability

Complex analysis and holomorphy

Measurable and non-measurable functions

Different directions in the study of lineability

Non-absolutely summing operators

- Kitson, Timoney (2010).
Some other results and open problems....

....in view of the amount of recent works in this line, our choice of material for this talk will be merely illustrative and far from being exhaustive....
More exotic differentiable functions

Theorem (Aron, Gurariy, Seoane-Sepúlveda, 2004)
The set of differentiable nowhere monotone functions on \mathbb{R} is \aleph_0-lineable.

Some time later the result was improved to c-lineability...

Theorem (Gámez, Muñoz, Sánchez, Seoane-Sepúlveda, 2010)
The set of differentiable nowhere monotone functions on \mathbb{R} is c-lineable.
Theorem (Aron, Gurariy, Seoane-Sepúlveda, 2004)

The set of differentiable nowhere monotone functions on \mathbb{R} is \aleph_0-lineable.
More exotic differentiable functions

Theorem (Aron, Gurariy, Seoane-Sepúlveda, 2004)

The set of differentiable nowhere monotone functions on \mathbb{R} is \aleph_0-lineable.

Some time later the result was improved to c-lineability...
More exotic differentiable functions

Theorem (Aron, Gurariy, Seoane-Sepúlveda, 2004)

The set of differentiable nowhere monotone functions on \mathbb{R} is \aleph_0-lineable.

Some time later the result was improved to c-lineability...

Theorem (Gámez, Muñoz, Sánchez, Seoane-Sepúlveda, 2010)

The set of differentiable nowhere monotone functions on \mathbb{R} is c-lineable.
Annulling functions in $C[0, 1]$ and spaceability

Definition
A function $f \in C[0, 1]$ is said to be an annulling function if f has infinitely many zeros in $[0, 1]$.

Theorem (Enflo, Gurariy, Seoane-Sepúlveda, 2012)
Let X be any infinite dimensional closed subspace of $C[0, 1]$.
There exists:
- An infinite dimensional closed subspace V of X, and
- a sequence $\{t_k\}_{k \in \mathbb{N}}$ (of pairwise different elements),

such that $f(t_k) = 0$ for every $k \in \mathbb{N}$ and every $f \in V$.

Daniel Pellegrino
Linear subsets of nonlinear sets in topological vector spaces
Definition

A function $f \in C[0, 1]$ is said to be an **annulling function** if f has infinitely many zeros in $[0, 1]$.

Theorem (Enflo, Gurariy, Seoane-Sepúlveda, 2012)

Let X be any infinite dimensional closed subspace of $C[0, 1]$. There exists:

- An infinite dimensional closed subspace V of X, and
- A sequence $\{t_k\}_{k \in \mathbb{N}}$ of pairwise different elements, such that $f(t_k) = 0$ for every $k \in \mathbb{N}$ and every $f \in V$.

Daniel Pellegrino

Linear subsets of nonlinear sets in topological vector spaces
Definition
A function $f \in C[0, 1]$ is said to be an annulling function if f has infinitely many zeros in $[0, 1]$.

Theorem (Enflo, Gurariy, Seoane-Sepúlveda, 2012)
Let X be any infinite dimensional closed subspace of $C[0, 1]$. There exists:
- An infinite dimensional closed subspace V of X, and
- a sequence $\{t_k\}_{k \in \mathbb{N}} \subset [0, 1]$ (of pairwise different elements), such that $f(t_k) = 0$ for every $k \in \mathbb{N}$ and every $f \in V$.
Problem (Aron and Gurariy, 2003):
Problem (Aron and Gurariy, 2003):

Is there an infinite dimensional subspace of ℓ_∞ every non-zero element of which has a finite number of zero coordinates?
Problem (Aron and Gurariy, 2003):

Is there an infinite dimensional subspace of ℓ_∞ every non-zero element of which has a finite number of zero coordinates?

It seems that this is not an open problem anymore. I was just informed that Daniel Cariello and Juan Seoane-Sepúlveda proved that
Problem (Aron and Gurariy, 2003):

Is there an infinite dimensional subspace of ℓ_∞ every non-zero element of which has a finite number of zero coordinates?

It seems that this is not an open problem anymore. I was just informed that Daniel Cariello and Juan Seoane-Sepúlveda proved that

- There exists such subspace (with dimension of the continuum).
Problem (Aron and Gurariy, 2003):

Is there an infinite dimensional subspace of ℓ_∞ every non-zero element of which has a finite number of zero coordinates?

It seems that this is not an open problem anymore. I was just informed that Daniel Cariello and Juan Seoane-Sepúlveda proved that

- There exists such subspace (with dimension of the continuum).
- Such subspace is never closed.
Theorem (Blumberg, 1922)

Let \(f : \mathbb{R} \to \mathbb{R} \) be an arbitrary function. There exists a dense subset \(S \subset \mathbb{R} \) such that the function \(f|_S \) is continuous.

A careful reading of the proof of this result shows that the above set \(S \) is countable. Naturally, we could wonder whether we can choose the subset \(S \) in Blumberg’s theorem to be uncountable.

Daniel Pellegrino

Linear subsets of nonlinear sets in topological vector spaces
Theorem (Blumberg, 1922)

Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. There exists a dense subset $S \subset \mathbb{R}$ such that the function $f|_S$ is continuous.
Theorem (Blumberg, 1922)

Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. There exists a dense subset $S \subset \mathbb{R}$ such that the function $f|_S$ is continuous.

A careful reading of the proof of this result shows that the above set S is countable.
Sierpiński-Zygmund functions and lineability

Theorem (Blumberg, 1922)

Let \(f : \mathbb{R} \to \mathbb{R} \) be an arbitrary function. There exists a dense subset \(S \subset \mathbb{R} \) such that the function \(f|_S \) is continuous.

A careful reading of the proof of this result shows that the above set \(S \) is countable.

Naturally, we could wonder whether we can choose the subset \(S \) in Blumberg’s theorem to be uncountable.
A very nice (although partial in some sense) negative answer to this was given by Sierpiński and Zygmund:
A very nice (although partial in some sense) negative answer to this was given by Sierpiński and Zygmund:

Theorem (Sierpiński, Zygmund, 1923)

There exists a function $f : \mathbb{R} \to \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $f|_Z$ is not a Borel map (in particular, is not continuous).
Shinoda proved in 1973 that under some axiomatic hypothesis (including the negation of the Continuum Hypothesis)....
Shinoda proved in 1973 that under some axiomatic hypothesis (including the negation of the Continuum Hypothesis)....

....for every $f : \mathbb{R} \to \mathbb{R}$ there exists an uncountable set $Z \subset \mathbb{R}$ so that the restriction $f|_Z$ is continuous.
Shinoda proved in 1973 that under some axiomatic hypothesis (including the negation of the Continuum Hypothesis)....

....for every $f : \mathbb{R} \to \mathbb{R}$ there exists an uncountable set $Z \subset \mathbb{R}$ so that the restriction $f|_Z$ is continuous.

PROBLEM:... what about the lineability of the set of Sierpiński-Zygmund functions?...
The set of Sierpiński-Zygmund functions is c^+ lineable.

A very interesting result in this direction is the following theorem...

Theorem (Gámez-Merino, Seoane-Sepúlveda, 2013)

The 2^{c^+}-lineability of the set of Sierpiński-Zygmund functions is undecidable. Its proof uses forcing as the main tool.
The set of Sierpiński-Zygmund functions is c^+ lineable.

A very interesting result in this direction is the following theorem...
The set of Sierpiński-Zygmund functions is $c^+ \text{ lineable}$.

A very interesting result in this direction is the following theorem...

The 2c-lineability of the set of Sierpiński-Zygmund functions is undecidable.
The set of Sierpiński-Zygmund functions is $c^+ \text{ lineable}$.

A very interesting result in this direction is the following theorem...

The 2^c-lineability of the set of Sierpiński-Zygmund functions is undecidable.

Its proof uses forcing as the main tool.
Continuous surjective functions and lineability

The following recent result is inspired in the famous Peano’s space-filling curve.

Theorem (Albuquerque, 2013)
The set of continuous surjective functions from \mathbb{R}^m to \mathbb{R}^n is c-lineable.
The following recent result is inspired in the famous Peano’s *space-filling curve*.
The following recent result is inspired in the famous Peano’s space-filling curve.

Theorem (Albuquerque, 2013)

The set of continuous surjective functions from \mathbb{R}^m to \mathbb{R}^n is c-lineable.
$L_p(\Omega, \Sigma, \mu)$ spaces and lineability

Theorem (Botelho, Favaro, –, Seoane, 2012)

$L_p[0,1] \bigcup q > p L_q[0,1]$ is spaceable for every $p > 0$.
$L_p(\Omega, \Sigma, \mu)$ spaces and lineability

Theorem (Botelho, Favaro, –, Seoane, 2012)

$L_p[0, 1] \setminus \bigcup_{q > p} L_q[0, 1]$ is spaceable for every $p > 0$.
Theorem (Botelho, Cariello, Fávaro, –, Seoane, 2012)

(Informal)...

Let (Ω, Σ, μ) be measure space, with $\mu(\Omega) = \infty$. Under very natural hypothesis $L^p(\Omega, \Sigma, \mu) - \bigcup_{1 \leq q < p} L^q(\Omega, \Sigma, \mu)$ is maximal spaceable.

Theorem (Botelho, Cariello, Fávaro, –, Seoane, 2012)

There exists a (quite exotic) measure space (Ω, Σ, μ) with $\mu(\Omega) = \infty$ so that $L^p(\Omega, \Sigma, \mu) - L^q(\Omega, \Sigma, \mu)$ with $q < p$ fails to be maximal spaceable.
Theorem (Botelho, Cariello, Fávaro, –, Seoane, 2012)

(Informal)...Let \((\Omega, \Sigma, \mu)\) be measure space, with \(\mu(\Omega) = \infty\). Under VERY natural hypothesis

\[
L_p(\Omega, \Sigma, \mu) - \bigcup_{1 \leq q < p} L_q(\Omega, \Sigma, \mu)
\]

is maximal spaceable.
Theorem (Botelho, Cariello, Fávaro, –, Seoane, 2012)

.getInformal...Let \((Ω, Σ, µ)\) be measure space, with \(µ(Ω) = ∞\). Under
VERY natural hypothesis

\[
L_p(Ω, Σ, µ) − \bigcup_{1 ≤ q < p} L_q(Ω, Σ, µ)
\]

is maximal spaceable.

Theorem (Botelho, Cariello, Fávaro, –, Seoane, 2012)

There exists a (quite exotic) measure space \((Ω, Σ, µ)\) with \(µ(Ω) = ∞\) so
that

\[
L_p(Ω, Σ, µ) − L_q(Ω, Σ, µ)
\]

with \(q < p\) fails to be maximal spaceable.
Is “everything” lineable?

Example: A (nontrivial) set that is 1-lineable and not 2-lineable.

Let $\hat{C}[0,1]$ be the subset of $C[0,1]$ of functions admitting one (and only one) absolute maximum.

If $V \subset \hat{C}[0,1] \cup \{0\}$ is a non-trivial linear space...

...then V is 1-dimensional......this result is due to Gurariy and Quarta.

Daniel Pellegrino
Linear subsets of nonlinear sets in topological vector spaces
EXAMPLE: A (nontrivial) set that is 1-lineable and not 2-lineable.
Is “everything” lineable?

EXAMPLE: A (nontrivial) set that is 1-lineable and not 2-lineable.

Let \(\hat{C}[0, 1] \) be the subset of \(C[0, 1] \) of functions admitting one (and only one) absolute maximum.
EXAMPLE: A (nontrivial) set that is 1-lineable and not 2-lineable.

Let \(\hat{C}[0, 1] \) be the subset of \(C[0, 1] \) of functions admitting one (and only one) absolute maximum.

If \(V \subset \hat{C}[0, 1] \cup \{0\} \) is a non-trivial linear space...
EXAMPLE: A (nontrivial) set that is 1-lineable and not 2-lineable.

Let \(\hat{C}[0, 1] \) be the subset of \(C[0, 1] \) of functions admitting one (and only one) absolute maximum.

If \(V \subset \hat{C}[0, 1] \cup \{0\} \) is a non-trivial linear space...

...then \(V \) is 1-dimensional......this result is due to Gurariy and Quarta.
EXAMPLE: A non-lineable, n-lineable set ($\forall n \in \mathbb{N}$).
Is “everything” lineable?

Example: A non-lineable, n-lineable set $(\forall n \in \mathbb{N})$.

The set

$$M = \bigcup_m \left\{ \sum_{i=2^m}^{2^m+1-1} a_i x^i : a_i \in \mathbb{R} \right\}$$

is n-lineable for every $n \in \mathbb{N}$ and it is not lineable in $C[0,1]$.
Zeroes of polynomials and lineability

One of the starting points of the connection between zeroes of polynomials and lineability is probably the following...

Theorem (Plichko, Zagorodnyuk, 1998)
If X is an infinite-dimensional complex Banach space and P is an n-homogeneous polynomial on X, then $P^{-1}(0)$ contains an infinite-dimensional subspace Y.

...what about the real case?

Daniel Pellegrino
Linear subsets of nonlinear sets in topological vector spaces
Zeroes of polynomials and lineability

One of the starting points of the connection between zeroes of polynomials and lineability is probably the following....
Zeroes of polynomials and lineability

One of the starting points of the connection between zeroes of polynomials and lineability is probably the following....

Theorem (Plichko, Zagorodnyuk, 1998)

If X is an infinite-dimensional complex Banach space and P is an n-homogeneous polynomial on X, then \(P^{-1}(0) \) contains an infinite-dimensional subspace Y.
One of the starting points of the connection between zeroes of polynomials and lineability is probably the following:

Theorem (Plichko, Zagorodnyuk, 1998)

If X *is an infinite-dimensional complex Banach space and* P *is an* n-*homogeneous polynomial on* X, *then* $P^{-1}(0)$ *contains an infinite-dimensional subspace* Y.

...what about the real case?
... for real scalars the situation is radically different as the polynomial $P : \ell_2 \to \mathbb{R}$ given by

$$P(x) = \sum_{j=1}^{\infty} x_j^2$$

shows.
The following result is proved via a non-constructive approach (it uses Zorn’s Lemma)
The following result is proved via a non-constructive approach (it uses Zorn’s Lemma).

Theorem (Aron, Boyd, Ryan, Zalduendo, 2003)

Let X be a (infinite-dimensional) real Banach space which does not admit a positive definite 2-homogeneous polynomial. Then, for every 2-homogeneous polynomial $P : X \to \mathbb{R}$, there is an infinite-dimensional subspace of X on which it is identically zero.... In other words, the zero-set of P is lineable.
One can ask about separability of the subspaces inside $P^{-1}(0)$....
One can ask about separability of the subspaces inside $P^{-1}(0)$.

Theorem (Fernández-Unzueta, 2006)

Let X be a (infinite-dimensional) complex Banach space containing l_{∞}. For every n, every n-homogeneous polynomial $P : X \to \mathbb{C}$ vanishes on a non-separable subspace of X.
One can ask about separability of the subspaces inside $P^{-1}(0)$.

Theorem (Fernández-Unzueta, 2006)

Let X be a (infinite-dimensional) complex Banach space containing l_∞. For every n, every n-homogeneous polynomial $P : X \to \mathbb{C}$ vanishes on a non-separable subspace of X.

On the other hand...
Theorem (Aviles, Todorcevic, 2009)

There exist a Banach space X and a 2-homogeneous polynomial $P : X \rightarrow \mathbb{C}$ so that $P^{-1}(0)$ contains no nonseparable subspace.
Theorem (Aviles, Todorcevic, 2009)

There exist a Banach space X and a 2-homogeneous polynomial $P : X \to \mathbb{C}$ so that $P^{-1}(0)$ contains no nonseparable subspace.

Theorem (Aviles, Todorcevic, 2009)

There exist a Banach space X and a 2-homogeneous polynomial $P : X \to \mathbb{C}$ so that $P^{-1}(0)$ contains both separable and nonseparable maximal subspaces.
Illustrating some arguments used in proofs of lineability and spaceability results....

Theorem (Botelho, Favaro, –, Seoane, 2012)

\[L^p[0,1] \cup L^q[0,1] \text{ is spaceable for every } p \geq 1. \]

Proof. Let us first consider the following representation of the semi-open interval \([0,1)\) as a disjoint union of intervals:

\[[0,1) = [0,1-1/2) \cup [1-1/2,1-1/4) \cup [1-1/4,1-1/8) \cup \cdots = \bigcup_{n=1}^{\infty} I_n, \]

where \(I_n := [a_n, b_n) = [1-1/2^n-1/2^n,1-1/2^n].\)
Illustrating some arguments used in proofs of lineability and spaceability results....

Theorem (Botelho, Favaro, –, Seoane, 2012)

\[L_p[0, 1] \setminus \bigcup_{q>p} L_q[0, 1] \text{ is spaceable for every } p \geq 1. \]
Illustrating some arguments used in proofs of lineability and spaceability results.

Theorem (Botelho, Favaro, –, Seoane, 2012)

$L_p[0,1] \setminus \bigcup_{q>p} L_q[0,1]$ is spaceable for every $p \geq 1$.

Proof. Let us first consider the following representation of the semi-open interval $[0,1)$ as a disjoint union of intervals:

$$[0,1) = [0,1-1/2) \cup [1-1/2,1-1/4) \cup [1-1/4,1-1/8) \cup \cdots = \bigcup_{n=1}^{\infty} I_n,$$

where $I_n := [a_n, b_n) = [1 - \frac{1}{2^n-1}, 1 - \frac{1}{2^n})$.
Notice that, for every $n \in \mathbb{N}$ and every $x \in I_n$, there is a unique $x_n \in [0, 1)$ such that
\[x = (1 - x_n)a_n + x_nb_n. \]
Illustrating some arguments used in proofs of lineability and spaceability results....

Notice that, for every $n \in \mathbb{N}$ and every $x \in l_n$, there is a unique $x_n \in [0, 1)$ such that

$$x = (1 - x_n)a_n + x_nb_n.$$

Now, given $p > 0$, let us fix a function $f \in L_p[0, 1] - \bigcup_{q > p} L_q[0, 1]$, and define a sequence of functions $(f_n)_{n=1}^{\infty}$, with $f_n : [0, 1] \rightarrow \mathbb{R}$, as follows:

$$f_n(x) = \begin{cases} f(x_n) & \text{if } x \in l_n, \\ 0 & \text{if } x \notin l_n. \end{cases}$$
Illustrating some arguments used in proofs of lineability and spaceability results....

The geometric idea is to reproduce the graph of \(f \) on the interval \(I_n \).
Illustrating some arguments used in proofs of lineability and spaceability results....

The geometric idea is to reproduce the graph of f on the interval I_n.

By construction, we have that $\|f_n\|_{L^p} \leq \|f\|_{L^p}$ for every $n \in \mathbb{N}$.
Illustrating some arguments used in proofs of lineability and spaceability results...

The geometric idea is to reproduce the graph of f on the interval I_n.

By construction, we have that $\|f_n\|_{L^p} \leq \|f\|_{L^p}$ for every $n \in \mathbb{N}$.

Also, the functions f_n are linearly independent (they have disjoint supports) and one can see that

$$\text{span}\{f_n : n \in \mathbb{N}\} \subset L_p[0,1] \setminus \bigcup_{q>p} L_q[0,1].$$
Illustrating some arguments used in proofs of lineability and spaceability results.

The geometric idea is to reproduce the graph of f on the interval I_n.

By construction, we have that $\|f_n\|_{L^p} \leq \|f\|_{L^p}$ for every $n \in \mathbb{N}$.

Also, the functions f_n are linearly independent (they have disjoint supports) and one can see that

$$\text{span}\{f_n : n \in \mathbb{N}\} \subset L_p[0, 1] \setminus \bigcup_{q>p} L_q[0, 1].$$

So $L_p[0, 1] \setminus \bigcup_{q>p} L_q[0, 1]$ is \aleph_0-lineable.
Illustrating some arguments used in proofs of lineability and spaceability results.

To prove that $L_p[0, 1] - \bigcup_{q > p} L_q[0, 1]$ is spaceable the idea is to define a bounded linear and injective operator $T : F \rightarrow L_p[0, 1]$, where F is a Banach space, and such that

$$\overline{T(F)} \cap L_q[0, 1] = \{0\}$$

for every $q > p$.
Illustrating some arguments used in the proofs of lineability....

It can be proved that

\[T: \ell_1 \longrightarrow L_p[0, 1], \quad T((\alpha_j)_{j=1}^{\infty}) = \sum_{n=1}^{\infty} \alpha_n f_n \]

is a well defined bounded linear operator.
It can be proved that

\[T: \ell_1 \to L_p[0, 1], \quad T((\alpha_j)_{j=1}^\infty) = \sum_{n=1}^\infty \alpha_n f_n \]

is a well defined bounded linear operator.

This operator is what we need.
Final remarks

Variations of the argument below are used in different contexts.
Final remarks

Variations of the argument below are used in different contexts.

... this technique is sometimes named *mother vector technique*.
Final remarks

Variations of the argument below are used in different contexts.

... this technique is sometimes named *mother vector technique*.

However, and it makes everything more interesting, this technique is limited to certain situations.....
Final remarks

Variations of the argument below are used in different contexts.

... this technique is sometimes named *mother vector technique*.

However, and it makes everything more interesting, this technique is limited to certain situations.....

... and new techniques are needed in different situations (in some cases non-constructive approaches).
Final remarks

In our survey we have collected 260 references in some sense related to the subject.... we hope to attract more people to the field...
Thanks...